Semantics-Directed Compiler Generation™

Michael J A Smith, University of Cambridge
<msmith@lanther.co.uk>

July 21, 2005

Abstract

This dissertation concerns the design and implementation of SEMCOM, an interpreter
generator for arbitrary languages, which compiles a two-level operational semantics (in
either big- or small-step style). Input to SEMCOM is expressed in a purpose-designed
Semantic Description Language (SDL). An SDL file contains the definition of an evaluation
and typing relation, and can express type systems up to polymorphism. The SEMCoOM
compiler performs a sequence of analyses on this input, and generates a lexer, parser, and
interpreter (in both OCaml and F#) for the user’s language. SDL itself is typed, and a
number of consistency checks are performed, producing comprehensive debugging output
and useful error messages. Non-deterministic semantics are supported.

1 Introduction

In essence, computation has always been concerned with automation, and this takes place at
many different levels. Rather than building systems directly in hardware, we have a processor
that provides a convenient abstraction — that is to say, we can concern ourselves with the move-
ment and processing of binary data, rather than the control of electrical signals. Furthermore,
we do not write general purpose programs in assembler, but use an abstracted language in which
we can talk about more meaningful concepts, such as objects, functions, and so forth.

The concept of abstraction does not end here, however. A programming language is not
just a shorthand for sequences of assembler instructions — it has an underlying meaning, which
is in some sense separate from the implementation. Over the course of time, our concept of
the semantics of a language has developed, so that we now have an underlying mathematical
framework with which to describe the execution of a program. In particular, an operational
semantics is a specification of an abstract machine (an inductively defined transition relation),
that explains the execution of a program as a sequence of syntactic transformations. Given
this formal description of a programming language, is it not natural to ask whether a compiler
could be generated automatically?

This is not as far-fetched as it sounds. Consider the humble parser. Before the theory of
formal context-free grammars was understood, the programmer had to code their lexing and
parsing routines by hand. Now, we have tools such as yacc, which will generate an efficient
parser from a BNF-style description of a grammar. Although this is a considerably more
constrained problem than the one just posed, it shows that useful tools can arise from the

*In this document, the term compiler generator is used to refer more generally to the automated generation
of compilers, interpreters and abstract machines.

application of theoretical Computer Science. Therefore, it seems worthwhile to investigate the
extent to which a compiler or interpreter may be generated from a semantics.

In undertaking this project, the most important step was to develop a metalanguage for
describing these semantics. My primary aim was to be pragmatic, yet not sacrifice the expres-
sivity of the semantics to too great an extent. Looking at the existing work!, there is a strong
tendency towards one extreme or the other. The Relational MetaLanguage RML [4] certainly
succeeds at generating an efficient interpreter (in C), but its language is not truly expressive —
it is constrained to directional relations that operate over a user-defined abstract syntax. The
work by Diehl [1], on the other hand, focuses on provably correct generation of a compiler and
abstract machine, and is not concerned with efficiency.

From the beginning, I wanted to produce a system that would require minimal work on the
part of the user, other than the design of the semantics itself. For example, in the case of a
simple language, it is much more intuitive to write down rules concerning concrete rather than
abstract syntax. If there is a simple mapping between the two, why not automate this? And if
the user provides syntax-directed typing rules, this gives us enough information? to generate a
parser and lexer, so why not do so automatically?

Alongside these goals, I did not want to over-constrain the metalanguage for the semantics.
Yet, given the timescale of my work, I had to make some compromises. In the end, I decided to
allow only two relations to be defined; namely an evaluation relation ‘=’ and a typing relation
‘. While this disallowed some language features (e.g. subtyping), it is easy to see how to
generalise, and it allowed me to concentrate on my primary proof of concept. Other than that,
I tried not to constrain too much else — I wanted to support polymorphism, hence I needed
type variables and type schemes (abstraction), and I did not want the user to have to worry
about unimportant matters such as the ordering of premises (as RML forces them to).

Taking all this into consideration, I designed the Semantic Description Language (SDL).
Along with the compiler, SEMCOM, the result of my project has been a working interpreter
generator. SEMCOM compiles an SDL description of a language’s semantics into OCaml code
for a lexer, parser and interpreter. In the spirit of generality, it supports not only Kahn’s
natural semantics [2], but also Plotkin’s structured operational semantics [5]. Non-deterministic
rules are allowed, and the interpreter performs Prolog-style backtracking to give the option of
attempting all possible executions. I have been able to test SEMCOM with a variety of semantics
for a subset of ML, as well as a version of Milner’s CCS.

2 Semantic Description Language (SDL)

I decided to keep my language close to the spirit of yacc, in that an SDL (.sem) file is split
into a number of sections, as follows:

(style_directive)
(eval _rules)

Yol

(type_rules)

Yol

(precedence_info)

The user must provide precedence information in the usual yacc format, and the evaluation

!The few examples here are not representative of the field. Consult [3] for a more thorough (though slightly
old) treatment.
2We also require information about operator precedence and associativity, but then again, so does yacc.

Type Relation T'Fe:T G- |l-e: T

Eval Relation (e, s) = (¢, ") <e,s> => <e’,s’>
Expressions fn x => e [[fn \x => \ell
(fn z => 1) ey [INC fn \x => \el \) \e2]]
e [N\ell =e
Conditions r=yANy==z x=y/\y=z
reSiVr eSS x IN S1 \/ x IN S2
—(x = add(y, 2)) ~(x = add(y,z))
Objects {a—b}f {a |-> b}f
fla] £[a]
{1,2,3}U(S1NSy) {1,2,3} UNION (S1 INTERSECT S2)
fto(T)\ fto(T) fev(T) \ ftv(Go)
Type Scheme VA.(T) H{A} T

Figure 1: SDL syntax: mathematical (typeset) notation and concrete syntax

G_ |- el : T;
{x |-> "{A}T}G_ |- e2 : T’

G- |- [[let val \x = \el in \e2 end]] : T’

A = ftv(T) \ ftv(G)) /\ “(x IN dom(G.))

Figure 2: An SDL type rule for let-polymorphism

and typing relations must be given as a sequence of inductive inference rules. Following the
work of Diehl, I decided to require a two-level semantics. In other words, all mathematical
operations are defined separately from the main semantics (hence the ‘second’ level). From the
user’s perspective, this means that they must define these operations as a library of OCaml
functions.

I was inspired by RML for the overall syntax, and this is best illustrated by example. Fig-
ure 2 shows an example typing rule for let-polymorphism, and Figure 1 compares SDL syntax
to the corresponding mathematical notation. SDL supports a number of useful mathematical
constructs, such as partial finite maps, and sets. Since metavariables may range over any of
these constructs, including terms in the target language, I designed SDL as a typed language.
The type inference system is non-trivial, since there are subtyping relations on maps and sets,
for example, but it avoids explicit type declarations on the part of the user.

Each rule consists of a conclusion, zero or more premises, and a side condition. The or-
dering of the premises and conditions is not important, since SEMCOM performs an internal
sequentialisation to resolve dependencies. Since rules are entirely relational, conditions act as
constraints, limiting the applicability of a rule.

This concept of constraint is one that needs further explanation. A rule contains, in its
conclusion, a fragment of target language syntax; for example ‘if x then y else z’. Thisisa
pattern. That is to say, the rule can match any program that has appropriate (i.e. grammatical)
expressions for x, y and z. If a side condition turns out to be false, or a premise cannot be
matched, the rule application is said to become stuck. We can then backtrack from such a state
to attempt other possible rules. This gives some insight into the execution mechanism I use,

~— Code
[Lexer]9[Parser F[Typecheckerj?ﬁ'ransformer}?[Gener ator] ml fs

|
| ' ' <ocamlc> <fsc>
{

Figure 3: The main execution stages of the SEMCOM compiler

as explained in the next section.

An important constraint that I imposed on SDL is that there must be precisely one typing
rule for every term in the target language’s syntax. Why is this? It allows SEMCoOM to infer
the syntax of the target language, and therefore to generate a parser for it. It also assumes that
there is a bijection between the language’s concrete and abstract syntax, so that the interpreter
can operate over an abstract syntax tree, without the user explicitly specifying it.

Whilst the typing rules are used to infer the language’s syntaz, I use the evaluation rules
to infer its values. A target language expression is a wvalue if it does not match any evaluation
rule (or it is a primitive value, such as an integer). A good example is function abstraction, for
languages like ML. Contrast this with finding a match for the expression, but getting stuck on
all possible rules, which is treated as an evaluation failure. A good example is division by zero.

For a big-step semantics, a single transition of the evaluation relation reduces an expression
to a value, but we have a sequence of transitions for a small-step semantics. Here, we apply the
relation until we reach a fixed point (a normal form), at which there are no more reductions.

3 Implementation

Like any compiler, SEMCOM has a number of phases of operation, as illustrated in Figure 3.
An SDL (.sem) file is passed through a lexer and parser, before being type-checked (to ease
human readability, there is the option here of typesetting the semantics (.tex output)). The
semantics then goes through a series of analyses and corresponding transformations, before
being passed to the code generator (outputting OCaml or F# by a command-line option). The
most interesting analyses are:

1. Constraint analysis — the premises and conditions of a rule may depend on metavariables
that have not yet been instantiated. This detects these dependencies, and performs a
sequentialisation transformation.

2. Multiple match detection — if two rules can match the same expression (e.g. for conditional
execution), we need to know about it to generate the interpreter’s backtracking engine.

3. Binder detection — to implement capture-avoiding substitution, we need to know which
identifiers are bound. This looks at the typing rules to determine which identifiers are
updated in the typing environment, hence determine which are binders.

The basic idea behind the generated interpreter is to define the evaluation and typing
relations as recursive functions. In reality, it is a little more complicated, since we need to
support backtracking, so SEMCOM uses its own execution stack. There are two such stacks, as
shown in Figure 4:

Premise
Condition
Premise
Completion env,
enNUpy_1
Condition
Completion envy
¢ (0

Figure 4: The evaluation and environment stacks

1. The evaluation stack, ¢, maintains a list of ‘goals to prove’, i.e. the premises and conditions
yet to be evaluated.

2. The environment stack, 1, holds a mapping from metavariables to semantic objects (a
context) for each rule in the process of being evaluated.

When a rule is matched, it pushes a list of premises and conditions onto the evaluation stack,
and also a completion. Without this, there would be no way for a premise to update the
environment of the rule that ‘called’ it. As a useful analogy, the environment stack behaves
like a stack frame (containing local variables and parameters), and the evaluation stack like a
local stack (on which execution takes place). I implemented an optimisation for tail-recursive
rules (such as loops), to prevent these stacks from growing too large.

The final issue is backtracking. This in fact requires a third stack, on which SEMCom
pushes the point to backtrack to, if an expression matches multiple rules. During execution,
the interpreter iteratively pops and executes the top element of ¢. If it becomes stuck, it
attempts to backtrack. Ultimately, either execution fails with an exception, or it completes, so
that ¢ and v each contain just one element; the final result of evaluation.

4 Conclusion

Automated compiler generation is by no means a new concept. Much research in the area has
taken place, but we have yet to see any significant products. There is a constant trade-off
between generality and efficiency; while the former leads to inefficient theorem-prover style
solutions, the latter leads to a dressed-up language with the emphasis still on the user. In
order to get anywhere useful, compromises have to be made. It is simply not feasible to be
general enough to cope with the most advanced type systems, nor to be as efficient as a modern,
optimised, compiler.

In my work on SEMCoM, I wanted to see how far complete automation is possible. To this
end, it has been a great success. By imposing a few simple constraints, such as syntax-directed
typing, it is possible to automatically generate a lexer and parser for the target language, in
addition to an interpreter. Furthermore, generality is not greatly sacrificed, since SEMCoOM
can deal with polymorphic type systems, and both big- and small-step semantics, including
non-determinism. Testing semantics of a subset of ML, and of Milner’s CCS, I investigated
various effects; for example call-by-value versus call-by-name, and the consequences of non-
value-restricted let-polymorphism.

Whilst I was not aiming for efficiency, it is interesting to note that the generated interpreters
execute roughly three orders of magnitude slower than natively compiled OCaml. This is
comparable to Diehl [1]. However, it is not difficult to turn an interpreter into a compiler; it
simply emits code rather than performing the execution itself®. This would offer a significant
increase in performance, since the overhead of the generated code is now mostly in the compiler.

Automated compiler generation is hard, but the majority of languages are relatively simple.
In fact, many are custom scripting languages, geared towards a specific application, and are
often interpreted. This sort of domain could benefit a great deal from automation, and I feel
that SEMCoM illustrates the feasible of this. As a solution, it is not complete, but it serves to
show that such tools are not as far away as one might think.

References

[1] S. Diehl. Semantics-Directed Generation of Compilers and Abstract Machines. PhD thesis,
University of the Saarland, Saarbriicken, Germany, 1996.

[2] G. Kahn. Natural semantics. In 4th Annual Symposium on Theoretical Aspects of Computer
Sciences on STACS’87, volume 247, pages 22-39, London, UK, 1987. Springer-Verlag.

[3] P. Lee. Realistic Compiler Generation. MIT Press, Cambridge, MA, USA, 1989.

[4] M. Pettersson. RML - a new language and implementation for natural semantics. In Pro-
gramming Language Implementation and Logic Programming, 6th International Symposium,
PLILP’9/, volume 844, pages 117-131. Springer-Verlag, 1994.

[5] G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report DATMI
FN-19, University of Aarhus, 1981.

[6] M.J.A. Smith. Semantics-directed compiler generation. Part II Dissertation, University of
Cambridge Computer Laboratory, http://lanther.co.uk/compsci/semcom/semcom. pdf,
2005.

3Loops need special treatment, but this is not difficult. See [6].

6

