
Compositional Abstractions for Long-Run

Properties of Stochastic Systems

Michael J. A. Smith

Department of Informatics and Mathematical Modelling

Danmarks Tekniske Universitet

Lyngby, Denmark

Email: mjas@imm.dtu.dk

Abstract—When analysing the performance of a system, we are
often interested in long-run properties, such as the proportion of
time it spends in a certain state. Stochastic process algebras help
us to answer this sort of question by building a compositional
model of the system, and using tools to analyse its underlying
Markov chain. However, this also leads to state space explosion
problems as the number of components in the model increases,
which severely limits the size of models we can analyse. Because
of this, we look for abstraction techniques that allow us to analyse
a smaller model that safely bounds the properties of the original.

In this paper, we present an approach to bounding long-run
properties of models in the stochastic process algebra PEPA.
We use a method called stochastic bounds to build upper and
lower bounds of the underlying Markov chain that are lumpable,
and therefore can be reduced in size. Importantly, we do this
compositionally, so that we bound each component of the model
separately, and compose these to obtain a bound for the entire
model. We present an algorithm for this, based on extending the
algorithm by Fourneau et al. to deal with partially-ordered state
spaces. Finally, we present some results from our implementation,
which forms part of the PEPA plug-in for Eclipse. We compare
the precision and state space reduction with results obtained by
computing long-run averages on a CTMDP-based abstraction.

I. INTRODUCTION

The primary aim of stochastic modelling is to gain insight

and understanding of systems that arise in practice, but the

models we create of such ‘real’ systems are often much too

large to analyse explicitly. We therefore need techniques for

abstracting these models — specifically, reducing their size so

that they become small enough to analyse. Given that we are

interested in some particular properties of the model, we need

to ensure that the abstract model gives us accurate results,

but this usually comes at the expense of lower precision. For

example, if the property is a probability, the abstract model

could give the interval [0.1, 0.2], which is accurate, but less

precise than that actual answer of 0.18.

In this paper, we will consider long-run properties of

Markovian models — after the system has been running for a

long time, what proportion of time does it spend in a particular

set of states? By answering this, we can calculate important

performance characteristics such as throughput, utilisation and

identification of bottleneck components.

To allow us to analyse such properties for large models, we

present a compositional approach to abstraction, based on the

technique of stochastic bounds [18]. The idea is to construct

an upper (or lower) bound of a Markov chain that is lumpable

Fig. 1. Compositional abstraction of PEPA models

with respect to a given abstraction — i.e. we can aggregate

states to build a smaller Markov chain that preserves the long-

run properties of the original. An algorithm for doing this was

presented in [9], and we extend this so that it can be applied

compositionally and over partially-ordered state spaces.

Our framework for compositional abstraction is presented

for the stochastic process algebra PEPA [11] — although our

results could be applied to other stochastic process algebras

with CSP-style synchronisation. We extend the notion of a

stochastic bound so that it can be applied to models com-

positionally. This is illustrated in Figure 1 — we bound and

aggregate each component in a PEPA model separately, such

that the aggregated model induces a Markov chain that is an

upper bound of the original. This means that we do not need to

construct the state space of the original Markov chain; only the

abstracted one. To do this, we use a Kronecker representation

for the underlying Markov chain of a PEPA model, which was

presented in [17]. Importantly, we have also implemented the

algorithm in this paper as part of the model checker in the

PEPA plug-in for Eclipse [1], [16].

There has been other work in relation to compositional

applications of stochastic bounds [5], [19]. In particular, [5]

uses a weaker constraint than stochastic monotonicity, to

obtain tighter bounds. Our approach differs by working with

stochastic monotonicity over partially ordered state spaces.

A summary of this paper is as follows. We begin in Sec-

tion II by introducing the use of Markov chains and PEPA for

stochastic modelling. We then introduce abstraction techniques

for Markov chains, and in particular stochastic bounds, in

Section III. In Section IV we show how to compositionally

apply stochastic bounds to PEPA models, and we present an

algorithm for computing bounds from a partially ordered state

space in Section V. Finally, we demonstrate this technique

on an example model in Section VI, before concluding in

Section VII. This is an extended version of the paper published

in QEST 2011 (copyright IEEE), with proofs contained in the

attached appendix.

II. STOCHASTIC MODELLING

When we build stochastic models of systems, we often

work with Markov chains, since there exist efficient numerical

solution techniques. These come in two flavours — discrete

time Markov chains, where we model how the system evolves,

but not how long it takes to do so, and continuous time Markov

chains, which are enriched with a notion of time.

Definition 1. A Discrete Time Markov Chain (DTMC) is a

tuple (S,P , L), where S is a finite non-empty set of states,

P : S × S → [0, 1] assigns a probability distribution over S
to each state s ∈ S, and L : S → AP is a labelling function

(AP is a finite set of atomic propositions). We require for all

s ∈ S that
∑

s′∈S P (s, s′) = 1.

Definition 2. A Continuous Time Markov Chain (CTMC) is a

tuple (S, r,P , L), where (S,P , L) is a DTMC (the embedded

DTMC), and r : S → R≥0 is a function describing the rate

of exit for each state, such that r(s) = 0 iff P (s, s) = 1. We

write Embed(M) for the embedded DTMC of a CTMC M .

In a CTMC, the time spent in a state s before making a

transition (the sojourn time) is governed by an exponentially-

distributed random variable Xs, such that for all t ∈ R≥0,

Pr(Xs ≤ t) = 1− e−r(s)t.

In the above definitions, P , r and L are functions, but it

is often convenient to think of them instead as matrices (P)

and vectors (r and L). This requires us to have an ordering

on the state space S, so that we map a state onto an index.

For the presentation in this section, the particular ordering is

not important, but it will play a major role when we look at

bounding techniques in Section III.

It is often useful for us to obtain a DTMC from a CTMC,

since certain properties are easier to check. If we just take

the embedded DTMC, however, we lose the fact that may we

spend longer on average in some states than in others — i.e.

that some states have different exit rates. A useful transforma-

tion is to uniformise the CTMC, so that all the exit rates are

the same. We do this by adding self-loops to states:

Definition 3. The uniformisation of a CTMC M =
(S, r,P , L) with rate λ ≥ maxs∈S r(s) is Unif λ(M) =
(S, r,P , L), where r(s) = λ for all s ∈ S, and:

P (s, s′) = r(s)
λ

P (s, s′) if s 6= s′

P (s, s) = 1−
∑

s′ 6=s P (s, s′) otherwise

This preserves all properties of the original CTMC that are

not sensitive to the distinction between making a transition to

the same state, and just staying in a state without exiting it.

To be more precise about what we mean by a property, there

are two types of quantitative properties that people usually

consider. Transient properties concern the behaviour of the

Markov chain up to the time at which some event happens

(e.g. entering a certain state). Long-run properties, on the other

hand, concern the behaviour of the model in the limit as it

runs forever — in particular, the long-run average proportion

of time that we spend in a certain set of states.

To define such long-run averages for a Markov chain, it

is convenient to use the labelling function to identify the

states that we are interested in. Letting AP = { 0, 1 }, we

can identify a set of states by the label L(s) = 1. The long-

run average ρ(s) of being in states s′ for which L(s′) = 1
(starting from state s) is given by the limit:

ρ(s) = lim
n→∞

1

N

N−1
∑

i=0

∑

s′∈S

P i(s, s′)L(s′)

If a Markov chain is ergodic — that is to say, it has a

strongly-connected state space (for a CTMC), or all its states

are positive recurrent and aperiodic (for a DTMC) — then

we can also express the long-run average ρ(s) in terms of

the steady state distribution π: for a DTMC, this is the

unique solution to the equation system πP = π subject

to the constraint
∑

s∈S π(s) = 1. We can then compute

ρ(s) =
∑

s′∈S π(s′)L(s′).
Note that even if a CTMC is not ergodic, we can still

compute long-run average probabilities using this approach —

we find the bottom strongly-connected components (BSCCs)

in the CTMC, and compute the steady state distribution for

each of these, along with the probability of reaching each

BSCC from a given initial state [3].

A. The Performance Evaluation Process Algebra (PEPA)

When we build a performance model of a system, we

usually want to use a modelling language, rather than writing

down a Markov chain directly. To this end, stochastic process

algebras have been developed as compositional modelling

formalisms — we model a number of components individually,

which are then composed together. The Performance Evalua-

tion Process Algebra (PEPA) [11] is one such language, whose

semantics maps a model onto a CTMC.

The syntax of PEPA is as follows:

CS := (a, r).CS | CS + CS | A
CM := CS | CM ⊲⊳

L
CM | CM/L

A sequential component CS describes an individual compo-

nent in the model, and a model component CM describes an

entire PEPA model. Components can perform and synchronise

over activities, which have an associated action (from a finite

set Act), along with a rate that describes its duration. The

meaning of each of the PEPA combinators is as follows:

• Prefix ((a, r).C): the component carries out an activity

with action a at rate r ∈ R≥0 ∪ {⊤}, to become C. If

r = ⊤, the activity is passive, and we need to synchronise

with another component to determine the rate.

• Choice (C1+C2): the component makes a choice between

behaving as C1 or as C2. This choice is made by a

race condition on the enabled activities of these compo-

nents — the first activity to complete determines which

component proceeds, with the other being discarded.

• Cooperation (C1 ⊲⊳
L

C2): the components C1 and C2

synchronise over the actions in L. An activity (a, r1) of

C1 with a ∈ L can only proceed if C2 also performs

an activity (a, r2) — they proceed together, at the rate of

the slowest component. Otherwise, if a 6∈ L, the activities

take place independently.

• Hiding (C/L): the component behaves as C, except that

any actions in L are renamed to the hidden type τ , which

cannot be synchronised over.

• Constant (A
def

= C): the component C is named A.

If we ignore the hiding operator1, a PEPA model has the

following structure, where Ci are sequential components:

C1 ⊲⊳
L1

· · · ⊲⊳
LN−1

CN (1)

An operational semantics of PEPA is given in [11], which

maps a model onto a labelled multi-transition system, from

which we can derive a CTMC. This approach considers the

model as a whole, however, and so is not compositional.

Instead, we will define the PEPA semantics in a component-

wise fashion, using a Kronecker representation for the CTMC

of a PEPA model. This was first introduced in [12], but we

will use a variant that was developed in [17].

To build the CTMC of a PEPA model compositionally, it is

useful to introduce the notion of a CTMC component:

Definition 4. A CTMC component is a tuple (S, r,P , L),
where S, P and L are defined as for a CTMC, and r : S →
R≥0 ∪ {⊤} assigns a rate (or ⊤) to each state.

Note that if none of the rates are passive, a CTMC compo-

nent corresponds to a CTMC.

We will use two composition operators for CTMC com-

ponents — � and ⊙ — corresponding to synchronised and

independent parallel composition respectively. For M1 =
(S1, r1,P1, L1) and M2 = (S2, r2,P2, L2):

M1 � M2 = (S1 × S2,min{ r1, r2 },P1 ⊗ P2, L1 × L2)

M1 ⊙M2 = (S1, r1,P1, L1) � (S2, r
′
⊤, I, L2)

+ (S1, r
′
⊤, I, L1) � (S2, r2,P2, L2)

where min{ r1, r2 }(s1, s2) = min{ r1(s1), r2(s2) }, r⊤(s) =
⊤ for all s, and I(s1, s2) = 1 if s1 = s2 and 0 oth-

erwise. The operator ⊗ denotes the Kronecker product of

two matrices [15]. Recalling that AP = { 0, 1 }, we define

(L1 × L2)(s1, s2) = L1(s1) · L2(s2).
For two CTMC components M1 = (S, r1,P1, L) and

M2 = (S, r2,P2, L) with the same state space S and labelling

function L, we define their addition as follows:

M1 + M2 =

(

S, r1 + r2,
r1

r1 + r2
P1 +

r2

r1 + r2
P2, L

)

1We can do this without loss of generality, since it is always possible to
rename action types to avoid name conflicts between components.

for (r1 + r2)(s) = r1(s) + r2(s), and ri

r1+r2

(s) = ri(s)
r1(s)+r2(s)

,

i ∈ { 1, 2 }, for all s ∈ S, and (rP)(s1, s2) = r(s1)P (s1, s2).
We can now describe the semantics of PEPA. Using the

operational semantics in [11], we can derive a CTMC com-

ponent JCKPEPA = (S, r,P , L) from a PEPA sequential

component C (we assume that we have some way of spec-

ifying the labelling function L for the component). We write

JCKPEPA
a = (S, ra,Pa, L) for the CTMC component over

the same state space S, but where ra and Pa contain only the

transitions corresponding to activities of action type a.

Definition 5. The CTMC induced by a PEPA model C is:

JCK =
∑

a∈Act(C)

JCKa

where Act(C) is the set of all action types that occur in C
(both synchronised and independent), and JCKa is as follows

(S.C. stands for Sequential Component):

JCKa = JCKPEPA
a if C is an S.C.

JC1 ⊲⊳
L

C2Ka =

{

JC1Ka � JC2Ka

JC1Ka ⊙ JC2Ka

if a ∈ L
if a 6∈ L

The proof that this construction corresponds to the CTMC

induced by the PEPA semantics is given in [17]. More pre-

cisely, the CTMCs given by the reachable state spaces of both

semantics, from the same initial state, are isomorphic.

III. ABSTRACTIONS OF MARKOV CHAINS

When we build a performance model of any reasonably

large system, we often run into difficulty with the size of the

model. This is particularly true when we use a compositional

formalism such as PEPA, where we run into the state space

explosion problem. One approach to analysing such large

models is to abstract them — that is to say, we construct

a smaller model that is easier to analyse, but that preserves

some properties of the original model.

To abstract a Markov chain, we need to map its state space

S onto a smaller state space S♯. This can be done by means

of a surjective function α : S → S♯ that maps every state in S
onto one in S♯. We call (S♯, α) an abstraction of S. If we try

to apply this to a CTMC, we have a problem defining the new

rates and transition probabilities, since we might map states

with different behaviour onto the same abstract state. In fact,

the abstraction typically only yields a CTMC if it satisfies

a condition called ordinary lumpability [14] (also known as

strong probabilistic bisimulation)2:

Definition 6. An ordinarily lumpable abstraction (S♯, α) of

a CTMC M = (S, r,P , L) is one such that for all states

s, s′ ∈ S, if α(s) = α(s′) then L(s) = L(s′) and for all

states s♯ ∈ S♯:
∑

{ t | α(t)=s♯ }

r(s)P (s, t) =
∑

{ t | α(t)=s♯ }

r(s′)P (s′, t)

2It has also been shown that Markovian testing equivalence and Markovian
trace equivalence induce exact aggregations [4].

The same definition holds for DTMCs if we remove the

occurrences of the rate function r. An ordinarily lumpable

abstraction induces a lumped CTMC by defining the new

transition probabilities and exit rates.

Unfortunately, it is usually not the case that an abstraction

of a Markov chain is ordinarily lumpable. One approach,

such as in [6], is to move to Markov Decision Processes

(MDPs), which have both probabilities (and rates in the case

of continuous-time MDPs) and non-determinism. A similar

approach is taken in [13], which uses abstract Markov chains

(also known as interval Markov chains), where there are

intervals of probabilities in the abstraction.

The problem with these methods is that by introducing

non-determinism, we lose the ability to compute steady state

probabilities. One approach is to use techniques for directly

computing long-run averages on the MDP abstraction, such

as in [7] and more recently in [20]. In this paper, we take

an alternative view, using stochastic bounds [18] to construct

an abstraction that is still a Markov chain, allowing the

standard approach to calculating long-run averages (based

on computing the steady state distribution of BSCCs) to be

applied [3]. We will return briefly to the former approach as

a comparison, in Section VI.

Stochastic bounding allows us to construct upper and lower

bounds for monotone properties of Markov chains. Since the

focus of this paper is on long-run average properties, we

will look at bounds on the steady-state distribution of ergodic

Markov chains. The important idea is to construct bounding

Markov chains that are lumpable, so that we can reduce the

size of the Markov chain to solve. But to formally define what

we mean by a bound, we first need to introduce a stochastic

ordering for probability distributions.

There are a number of different stochastic orderings [18],

but for our purposes we will use only the strong stochastic

order, which we denote ≤st. This is defined for comparing

random variables in general, but for our purposes we will con-

sider just discrete random variables, which can be represented

as a vector of probabilities, summing to one:

Definition 7. Let X be a random variable on a partially

ordered state space (S,≺), and x be a vector such that

Pr(X ≻ s) =
∑

s′≻s x(s′). Let y be defined similarly for

a random variable Y over (S,≺). We say that x ≤st y if for

all s ∈ S:
∑

s′≻s

x(s′) ≤
∑

s′≻s

y(s′)

We can extend this ordering to Markov chains as follows.

The DTMCs M1 = (S,P1, L) and M2 = (S,P2, L) are

comparable (M1 ≤st M2) with respect to an initial distribution

ι : S → [0, 1] if for all n ∈ N, ιP n
1 ≤st ιP n

2 . This is not a

very practical definition, however, and so we instead look for

conditions based on properties of P .

There are two important properties of such matrices: compa-

rability and monotonicity. We shall assume that the state space

of a matrix P (i.e. its row and column indices) is a partially

ordered set (SP ,≺P), and we shall omit the subscript when it

is clear from context. Furthermore, we use the notation P (i, ∗)
for row i of matrix P , which is itself a row vector.

Definition 8. A stochastic matrix P is monotone if for all row

vectors u, v, u ≤st v implies that uP ≤st vP . Equivalently,

for all s, s′ ∈ S such that s ≺ s′, P (s, ∗) ≤st P (s′, ∗).

Definition 9. The stochastic matrices P and P ′ are compa-

rable, denoted P ≤st P ′, if they share the same state space

(S,≺), and for all s ∈ S, P (s, ∗) ≤st P ′(s, ∗).

Theorem 10. Consider the DTMCs M1 = (S,P1, L) and

M2 = (S,P2, L) with the same state space S and labelling

function L. The following requirements are sufficient to ensure

that M1 ≤st M2 for all initial distributions:

1) P1 ≤st P2.

2) At least one of P1 and P2 is monotone.

Theorem 11. Two CTMCs M1 = (S,P1, r1, L) and M2 =
(S,P2, r2, L) are comparable such that M1 ≤st M2 if for

all λ ≥ max{maxs∈S r1(s),maxs∈S r2(s) }:

Embed(Unif λ(M1)) ≤st Embed(Unif λ(M2))

Since stochastic comparison of CTMCs is defined in terms of

stochastic comparison of DTMCs, we can consider only the

latter, without loss of generality, for the remainder of this sec-

tion. The need to uniformise CTMCs, however, will become

important when we apply these techniques compositionally to

PEPA models in Section IV.

For stochastic bounds to be of practical use, we need

algorithms to construct monotone upper and lower bounding

matrices, given the probability transition matrix of a DTMC.

Furthermore, not only do we need them to be bounding, but

they must be lumpable with respect to the desired abstraction.

In [9], an algorithm is given to derive an irreducible and

lumpable bounding matrix for a DTMC, assuming a totally

ordered state space. This is an extension of the algorithm

in [2], which just finds a monotone upper-bounding probability

transition matrix for a DTMC. This algorithm arose from

observing that, for P ≤st R, the following inequalities must

hold for the (n× n) stochastic matrix R to be monotone:

1) For all 1 ≤ i ≤ n, P (i, ∗) ≤st R(i, ∗).
2) For all 1 ≤ i ≤ n− 1, R(i, ∗) ≤st R(i + 1, ∗).

In the basic algorithm, the first row of R is equal to that of

P , and each subsequent row is determined by the maximum

of the left-hand sides of the above inequalities. The first

condition can be restated as
∑n

k=j P (i, k) ≤
∑n

k=j R(i, k),
for all j, since the ordering is total. Hence:

R(i, j) = max

8

<

:

n
X

k=j

R(i− 1, k),

n
X

k=j

P (i, k)

9

=

;

−

n
X

k=j+1

R(i, k)

We can iteratively construct the matrix R based on the

above equation, starting with the first row and the last column,

and iterating down the rows before moving onto the next

column. Since the algorithm for computing a lower bounding

matrix is very similar, we will only consider the construction

of upper bounds throughout this paper.

Unfortunately, this does not guarantee that if P is irre-

ducible then R will also be, since it is possible to delete

transitions. Fourneau et al. [9] address this by modifying the

algorithm to avoid unnecessarily deleting transitions. Further-

more, they produce an upper-bounding matrix that is not only

monotone and irreducible, but lumpable with respect to a given

partition. To achieve this, they structure the matrix so that

states in the same partition have contiguous indices, and make

the matrix lumpable by setting the next state distribution in

each partition to the maximum that occurs within that partition.

This ensures that the matrix remains monotone. The worst-case

time complexity of this algorithm is O(n2), where n is the size

of the state space (i.e. P and R are n× n matrices) [9].

The main disadvantage of this algorithm is that it requires

the state space to be totally ordered. It is possible to extend any

partial order to a total order, but this will result in a stronger

order than we need, and so give lower precision in the bounds.

We will see later, in Section V, how to modify this algorithm

to work with a simple class of partially ordered state spaces.

IV. STOCHASTIC BOUNDING OF PEPA MODELS

Having introduced the Kronecker form for PEPA models,

we can turn to applying stochastic bounds compositionally.

In this section, we will extend the definitions of stochastic

ordering and monotonicity, so that when we compose the

bounds of two PEPA components, the resulting CTMC is a

bound of that induced by the original components. We present

an algorithm for constructing these bounds in Section V.

The work we present here is general in the sense that it

applies to all PEPA models. This is in contrast to previous

work, which considers the application of stochastic bounds

to particular classes of PEPA model, such as passage time

properties of workflow-structured models [8]. There is an

advantage to looking at specific classes of models, in that it

may be possible to obtain more precise bounds in light of the

additional information that is available. However, generality is

also important, in that we can analyse models without needing

to assume anything about their particular structure.

Before bounding a PEPA model, we need to decide upon

two things — an ordering, and a partitioning of its state space.

Since the idea is to produce the bound compositionally, these

must also be defined compositionally. If we have an abstraction

(S♯
i , αi) for each component Ci in a PEPA model, we can

compose these to induce an abstraction for the entire model.

This defines a unique partitioning of the state space according

to which concrete states map to the same abstract state.

In addition to partitioning the state space, we need to

provide an ordering. The ordering we choose will in general

depend on the property we are interested in. For example,

if are interested in the steady state probability of being in a

particular set of states, it makes sense to place these at the ‘top’

of the ordering. This is so that we can directly compare the

probability of being in this set. Furthermore, choosing a partial

order can be advantageous, since it allows more flexibility

Fig. 2. State space ordering and lumpability constraints

when constructing the bound. The only constraint we have

is to only allow entire partitions to be compared with other

partitions, so that the abstraction can be applied.

The definitions and theorems in this section are applicable

to any partial order, but in order to algorithmically construct

the bound, we will restrict ourselves to the following class:

Definition 12. A simple partial order over a state space S is

given by a set of M disjoint sets, B1, . . . ,BM ⊆ S, where:

s ≺ s′ iff ∃i, j. s ∈ Bi ∧ s′ ∈ Bj ∧ i < j

Each Bi may contain multiple partitions, but not vice versa.

This is illustrated in Figure 2, which shows an example state

space ordering and partitioning, and the resulting constraints

on the upper-bounding transition matrix.

Given an ordering and partitioning of a state space, we need

to find a monotone CTMC that is both lumpable and an upper

bound of the original CTMC. To do this compositionally, we

must work at the level of CTMC components, bounding both

the rate function r and the transition matrix P separately.

This is so that when we construct the CTMC of the entire

model, according to Definition 5, it remains upper-bounding,

monotone and lumpable.

Unfortunately, it is not necessarily the case that a CTMC

is monotone, even if r and P both are. Recall that for a

CTMC to be monotone we require its embedded DTMC

after uniformisation to be monotone. This is illustrated by the

following example — r and P are monotone, but P is not:

M = (S, r,P , L) =



S,





1
1
2



 ,





1
2

1
2 0

1
2 0 1

2
1
2 0 1

2



 , L





Unif 2(M) = (S, r,P , L) =



S,





2
2
2



 ,





3
4

1
4 0

1
4

1
2

1
4

1
2 0 1

2



 , L





To avoid this problem, we need to strengthen the definitions

of stochastic ordering and monotonicity, by adding an extra

constraint. We call these the rate-wise stochastic ordering and

rate-wise monotonicity respectively. Their definitions are:

Definition 13. Two CTMC components M = (S, r,P , L)
and M ′ = (S, r′,P ′, L), with the same state space S and

labelling function L, are ordered M ≤rst M ′ under the rate-

wise stochastic ordering, if:

1) P ≤st P ′

2) For all states s ∈ S such that r(s) 6= r′(s), if r(s) = 0

and r′(s) > 0 then ∀s′ ≺ s.
∑

t≻s′

P ′(s, t) = 1,

otherwise:

1 ≤
r′(s)

r(s)
≤ min

s′≺s















1−
∑

t≻s′

P (s, t)

1−
∑

t≻s′

P ′(s, t)















Definition 14. A CTMC component M = (S, r,P , L) is rate-

wise monotone if:

1) P is monotone.

2) For all states s, s′ ∈ S such that s ≺ s′ and

r(s) 6= r(s′), if r(s) = 0 and r(s′) > 0 then

∀s′′ ≺ s.
∑

t≻s′′

P (s′, t) = 1, otherwise:

1 ≤
r(s′)

r(s)
≤ min

s′′≺s















1−
∑

t≻s′′

P (s, t)

1−
∑

t≻s′′

P (s′, t)















Intuitively, condition 2 ensures that the probability transition

matrix increases faster than the rate function, so that after

uniformisation we remain monotone and comparable. Note

that this is not a condition on the original model — we just

need to ensure that it holds for the upper bound.

We can show that strong stochastic comparison and mono-

tonicity follow from rate-wise stochastic comparison and

monotonicity. This means that the CTMC that we construct

by this method is stochastically comparable in the usual sense.

We state this in the following two theorems:

Theorem 15. If M = (S, r,P , L) ≤rst M ′ = (S, r′,P ′, L)
and for all s ∈ S, r(s) ≤ r′(s), then M ≤st M ′.

Theorem 16. If M = (S, r,P , L) is rate-wise monotone, and

for all s ≺ s′ ∈ S, r(s) ≤ r(s′), then M is monotone.

Unfortunately, it is still not the case that rate-wise mono-

tonicity and rate-wise stochastic ordering are preserved in

general when two components cooperate. The problem arises

due to the minimum operator, which is applied to the rate

functions. If we take monotonicity, for example, the ratio

between successive rates places constraints on the probabilistic

transition matrix. When we compose two monotone compo-

nents, it is possible for one to be completely bounded by the

other in terms of its ability to perform an activity of type

a. That is to say, the rate of performing a in each state of

one component is less than the rate of a in any state of the

other. Hence the minimum of the two rate functions, and the

resulting constraint on the composed probabilistic transition

matrix, depends on only one of the components. The required

constraint on the composed matrix may therefore be tighter

than that of one of the components.

This problem is clearer if we look at a particular example:

M = (S, r,P , L) =



S,





3
3
3



 ,





1
2

1
2 0

1
2 0 1

2
1
2 0 1

2



 , L





This CTMC component is rate-wise monotone, but if it were

to synchronise with a component that has a rate function r =
[1, 1, 2]T, we would result in the same problem as before.

It is therefore not possible for us to construct a bound for

a sequential component, without considering the context in

which it occurs. To define this context, we need a measure on

components, to indicate the extent to which the rate function

increases. For monotonicity, we are concerned with the ratio

between successive rates, and in particular the maximum of

these. This is because, when taking the Kronecker product, we

consider all possible state combinations. Hence the maximum

increase will actually occur, and gives a bound on how a

component can affect those that it cooperates with.

Definition 17. The internal rate measure of a PEPA compo-

nent C, where JCKa = (S, ra,Pa, L) for action type a, is:

‖C‖a =







⊤ if ∃s. succ(s) 6= ∅ ∧ ra(s) = 0

max
s,s′

{

ra(s′)

ra(s)

∣

∣

∣

∣

s′ ∈ succ(s)

}

otherwise

Note that max ∅ = 0. Here, succ(s) denotes the set of imme-

diate successors of the state s as defined by the simple partial

order3. More precisely, s′ ∈ succ(s) iff s′ ≻ s ∧ ¬∃s′′. s′ ≻
s′′ ≻ s. In the case of stochastic ordering, we need to compare

the rate functions of two components (the original and the

bound), but otherwise the same principle applies:

Definition 18. The comparative rate measure of PEPA com-

ponents C and C ′, where JCKa = (S, ra,Pa, L) and where

JC ′Ka = (S′, r′a,P ′
a, L′) for action type a, is defined as:

‖C,C ′‖a =







⊤ if ∃s. succ(s) 6= ∅ ∧ ra(s) = 0

max
s

{

r′a(s)

ra(s)

}

otherwise

In the above definitions, note that the ratio may be undefined

(i.e. ra(s) = 0). In this case, we define the ratio to have the

value ⊤, which dominates all the reals.

We can now define precisely what we mean by a context,

which is slightly different from a conventional process algebra

definition, since we care only about those components that can

affect the rate at which we perform an activity.

Definition 19. The context C of a component C is the set of

all components that it can cooperate with, as defined by the

system equation. We say that C is internally bounded by Bint ,

with respect to action type a, if:

∀Ci ∈ C, ‖Ci‖a ≤ Bint

3Note that this successor function comes from our partial order of the state
space (i.e. the order that tells us which probabilities we can compare), and
not from the transition relation of the Markov chain.

Furthermore, C and C′ are comparatively bounded by Bcomp ,

with respect to action type a, if:

∀Ci ∈ C, C
′
i ∈ C

′, ‖Ci, C
′
i‖a ≤ Bcomp

Since the internal and comparative bounds depend only on

the rate functions, we have a simple algorithm for computing

them. If we construct a monotone upper bound of each

rate function before bounding the transition matrices, we can

compute the internal and comparative bounds of a context as

the maximum bounds of the components within the context.

This leads us to the final extension of our definitions —

the context-bounded rate-wise stochastic ordering and context-

bounded rate-wise monotonicity, which extend Definitions 13

and 14 respectively. Intuitively, they require the rate function

ri,a of component i to not increase faster than the matrices

Pj,a, j 6= i, of all its cooperating components allow for.

Definition 20. Two CTMC components Ma = (S, ra,Pa, L)
and M ′

a = (S, r′a,P ′
a, L), with the same state space S and

labelling function L, are ordered Ma ≤
Bcomp

rst M ′
a under the

context-bounded rate-wise stochastic ordering, if:

1) Pa ≤st P ′
a

2) For all states s ∈ S such that ra(s) 6= r′a(s), if

Bcomp = ⊤ or ra(s) = 0 and r′a(s) > 0, then

∀s′ ≺ s.
∑

t≻s′

P ′
a(s, t) = 1, otherwise:

1 ≤ max

{

r′a(s)

ra(s)
, Bcomp

}

≤ min
s′≺s















1−
∑

t≻s′

Pa(s, t)

1−
∑

t≻s′

P ′
a(s, t)















We extend the definition of rate-wise monotonicity similarly:

Definition 21. A CTMC component Ma = (S, ra,Pa, L) is

context-bounded rate-wise monotone with respect to Bint , if:

1) Pa is monotone.

2) For all states s, s′ ∈ S such that s ≺ s′ and ra(s) 6=
ra(s′), if Bint = ⊤ or ra(s) = 0 and ra(s′) > 0, then

∀s′′ ≺ s.
∑

t≻s′′

Pa(s′, t) = 1, otherwise:

1 ≤ max

{

ra(s′)

ra(s)
, Bint

}

≤ min
s′′≺s















1−
∑

t≻s′′

Pa(s, t)

1−
∑

t≻s′′

Pa(s′, t)















Note that this dependence on the context of a component is

due to the nature of synchronisation in PEPA.

We can now prove that the CTMC of the system, after com-

posing the individual components, is a monotone, lumpable

upper bound of the concrete CTMC, with respect to the

ordering on each component. For components C1 and C2 with

state spaces (S1,≺1) and (S2,≺2) respectively, the � operator

preserves stochastic comparison and monotonicity with respect

to the lifted orders (S1×S2,≺
L
1) and (S1×S2,≺

L
2). We say

(s1, s2) ≺
L
1 (s′1, s

′
2) if s1 ≺1 s′1, and ¬∃s′′2 . s′′2 ≺2 s2. We

define ≺L
2 similarly.

Theorem 22 (Monotonicity). Let two PEPA components, C1

and C2, occur in contexts C1 and C2 respectively, where C1 ∈
C2 and C2 ∈ C1. Let C1 be internally bounded by B1

int and

C2 by B2
int , for action type a.

If the CTMC components JC1Ka = (S1, r1,a,P1,aL1) and

JC2Ka = (S2, r2,a,P2,aL2) are context-bounded rate-wise

monotone by B1
int and B2

int respectively, then JC1Ka � JC2Ka

is context-bounded rate-wise monotone by the internal bound

B3
int of the context C1∩C2 of C1 ⊲⊳

L
C2, for all action sets L.

Theorem 23 (Lumpability). Let C1 and C2 be PEPA models

with abstractions (S♯
1, α1) and (S♯

2, α2) respectively. Then for

all action types a, if (S♯
1, α1) is a lumpable abstraction of

JC1Ka and (S♯
2, α2) is a lumpable abstraction of JC2Ka, then

(S♯
1×S♯

2, α1×α2) is a lumpable abstraction of JC1Ka�JC2Ka.

Theorem 24 (Stochastic Order). Consider the PEPA com-

ponents Ci and C ′
i, such that JCiKa = (Si, ri,a,Pi,aLi) and

JC ′
iKa = (S′

i, r
′
i,a,P ′

i,aL′
i) for i ∈ {1, 2} and action type

a. Let JCiKa ≤
Bi

comp

rst JC ′
iKa, with contexts Ci ≤st C

′
i, where

Bi
comp is the comparative bound of Ci and C′i. If B3

comp is the

comparative bound of the contexts C1∩C2 and C′1∩C
′
2, then

JC1Ka � JC2Ka ≤
B3

comp

rst JC ′
1Ka � JC ′

2Ka.

Monotonicity and stochastic order are preserved due to the

definitions we have developed. Lumpability (strong bisimula-

tion) is preserved by the PEPA cooperation combinator [11].

It is straightforward to show that corresponding theorems

hold for the addition of CTMC components, if they have the

same partially ordered state space. A consequence is that we

just need to construct an upper bound for CTMC component of

each sequential component for each action type, so that when

we expand the � and ⊙ operators of the Kronecker form, we

get an upper bound for the CTMC of the entire model.

V. AN ALGORITHM FOR COMPUTING A STOCHASTIC

BOUND OF A PEPA COMPONENT

Algorithm 1 An algorithm for constructing a context-bounded

rate-wise upper-bounding probability transition matrix (P , B,

and (S♯, α) are taken as inputs)

1: R(i, j)← 0 for all i, j
2: y′ ← |S♯

i |
3: for y ← |S♯

i | to 1 do

4: if b(y) = b(Bk) for some Bk then

5: refresh sum(P ,R, b(y), e(y′))
6: normalise(R, b(y), e(y′))
7: for p← y′ to y do

8: normalise partition(R, b(p), e(p))
9: end for

10: y′ ← y − 1
11: end if

12: end for

Our algorithm for constructing an upper bound for a steady

state property of a PEPA model is as follows. We take a PEPA

model of the form C1 ⊲⊳
L1

· · · ⊲⊳
Ln−1

Cn. For each action type

a 6∈ ∪iLi, we rename a to the internal action type τ — i.e. we

group all internal transitions together. For each component Ci,

we take as input an abstraction (S♯
i , αi), and a simple partial

order specified by Bi = {Bi,1, . . .Bi,mi
}.

1) For each component Ci, we construct a mapping Ii

from its state space Si to matrix indices {1, . . . , |Si|}, so

that states in the same partition have contiguous indices,

which are ordered such that s ≺ s′ ⇒ Ii(s) < Ii(s
′).

2) We compute a lumpable monotone upper-bounding rate

function r′i,a from the rate function ri,a of each compo-

nent Ci and action type a ∈ ∪iLi:

r′i,a(s ∈ Bi,k) = max







{ri,a(s′) | αi(s
′) = αi(s)} ∪

mi
⋃

j=k+1

{ri,a(s′) | s′ ∈ Bi,j}







3) We calculate the internal bound Bint and comparative

bound Bcomp for the context of each component and

action type a ∈ ∪iLi, using the bounded rate functions.

4) We compute an upper-bounding probability transition

matrix Ri,a from the transition matrix Pi,a of each

component Ci and action type a ∈ L (Algorithm 1).

5) For the internal action type τ , we uniformise the CTMC

component JCiKτ , and apply Algorithm 1 with no con-

text constraints. Since every state has the same exit rate,

the algorithm reduces to that of Fourneau et al. over a

partially ordered state space.

6) We construct and solve the generator matrix obtained

by multiplying out the Kronecker representation of the

upper-bounding model4.

It is important to note that not all of the components in the

model necessarily need to have ordering constraints on their

state space. For example, if we are interested in a property

of just one component — i.e. the projection from the state

space of the system onto that of the component — then we

have no particular constraints on the probability distributions

of the other components. But what does this mean in terms

of constructing a bound for that component? The theorems in

the previous section only account for when we need to bound

a component. If we wish to exclude one of the components,

we have to assume the ‘worst’ case — that is to say, that the

component does not have any effect on the rest of the system.

Intuitively, when we bound a component, we maximise

the probability of moving into higher valued states in the

ordering. Since cooperation in PEPA takes the minimum of

two rates, it is possible for a component to limit, but not

increase, the transition rates for a particular action type. Hence

a monotone upper bound for a component is a true upper bound

in the worst-case context. This means that we can ignore other

components and still obtain, locally, an upper bound.

4To implement this, we need to explore the transition system generated
by the new model, rather than performing the Kronecker multiplications
explicitly. This avoids including unreachable states, which would result in
a singular generator matrix.

Algorithm 2 refresh sum(P ,R, b, e)

1: for Bk ← B1 to Bm do

2: Rmax ← max
s∈Bk−1

|S|
∑

j=b

R(s, j)

3: Pmax ← max
s∈Bk

|S|
∑

j=b

P (s, j)

4: BI ← 1−min







Bint ,
max
s∈Bk

r(s)

max
s∈Bk

r′(s)







(1−Rmax)

5: BC ← 1−min







Bcomp ,

max
s∈Bk−1

r′(s)

max
s∈Bk

r′(s)







(1− Pmax)

6: for i← b(Bk) to e(Bk) do

7: if i ≥ b then

8: Σnew ← max{Rmax , Pmax ,BI ,BC}
9: else

10: Σnew ← max{Rmax , Pmax}
11: end if

12: Pnew ← Σnew −

|S|
∑

j′=e+1

R(i, j′)

13: Pold ←
e

∑

j=b

P (i, j)

14: for j ← b to e do

15: if Pold > 0 then

16: R(i, j)← P (i,j)
Pold

Pnew

17: else

18: R(i, j)← 1
e−b+1Pnew

19: end if

20: end for

21: end for

22: end for

Algorithm 3 normalise(R, b, e)

1: for y ← 1 to |S♯| do

2: Rnew ←
e(y)
max
i=b(y)

e
∑

j=b

R(i, j)

3: for i← b(y) to e(y) do

4: Rold ←
e

∑

j=b

R(i, j)

5: for j ← b to e do

6: if Rold > 0 then

7: R(i, j)← R(i,j)
Rold

Rnew

8: else

9: R(i, j)← 1
e−b+1Rnew

10: end if

11: end for

12: end for

13: end for

Algorithm 4 normalise partition(R, b, e)

1: for y ← 1 to |S♯| do

2: Raverage ←
1

e(y)−b(y)+1

e(y)
∑

i=b(y)

e
∑

j=b

R(i, j)

3: for i← b(y) to e(y) do

4: for j ← b to e do

5: R(i, j)← Raverage

6: end for

7: end for

8: end for

Let us examine Algorithm 1 in more detail. This takes as

input a probability transition matrix P , and an empty matrix R

(of the same dimensions) in which to construct the monotone

and lumpable upper bound. We assume that the upper bound

r′ of the rate function r has already been constructed, along

with the internal and comparative bounds, Bint and Bcomp .

We define b(y) and e(y) respectively as the minimum and

maximum index in the set {I(s) | I♯(α(s)) = y}5. b(Bk) and

e(Bk) are defined similarly for the set {I(s) | s ∈ Bk}.
Algorithm 1 makes use of three sub-procedures:

1) refresh sum(P ,R, b, e) (Algorithm 2) ensures that for

each ordering block, from indices b to e, the matrix R

is context-bounded rate-wise monotone, and an upper

bound of P . The core of this algorithm is the compu-

tation of Σnew , where the bounds BI and BC come

directly from re-arranging the definitions of context-

bounded rate-wise stochastic ordering and monotonicity

respectively (Definitions 20 and 21). Note that these

additional constraints are only needed for elements on

or below the diagonal (i ≥ b).

To achieve a new row sum of Σnew , we adjust the

individual entries in R so that the relative probabilities

are preserved. This choice minimises our impact on the

matrix — as the ordering is partial, we can distribute the

probability mass within an ordering block in any way.

2) normalise(R, b, e) (Algorithm 3) ensures that for each

partition in the ordering block from indices b to e,

states in the same partition have the same probability

of moving to a different ordering block.

3) normalise partition(R, b, e) (Algorithm 4) ensures that

each state in the partition from indices b to e has the

same probability of moving to another partition. We

choose to assign the average transition probabilities.

Essentially, the normalise procedure ensures lumpability of

ordering blocks — by ‘borrowing’ probability mass from

lower ordering blocks — which preserves monotonicity. nor-

malise partition then ensures lumpability of partitions, by re-

distributing probability mass within the same ordering block.

Property 25. The worst-case time complexity for Algorithm 1

is O(|S|2), where S is the state space of the CTMC component.

5I♯ is defined such that I(s) < I(s′) ⇒ I♯(α(s)) ≤ I♯(α(s′)).

PC i = (arrive, λi).PC ′
i + (walkoni⊕1,⊤).PC i

PC ′
i = (servei,⊤).PC i

Server i = (walkoni⊕1, ω).Server i⊕1 + (servei, µ).Server ′
i

Server ′
i = (walk i⊕1, ω).Server i⊕1

(PC 0 ‖ · · · ‖ PCn−1) ⊲⊳
{walkon,serve}

Server0

Fig. 3. A PEPA model of a round-robin server

This follows because the refresh sum, normalise, and nor-

malise partition procedures each contribute O(|S|2) opera-

tions in the worst case. For each ordering block, we apply

normalise to the block, and normalise partition to each parti-

tion within the block — since the number of states in all the

partitions within a block is equal to the number of states within

the block, these two procedures result in the same number of

operations. Similarly, note that in the normalise algorithm,

the outermost loop iterates over all the partitions (abstract

states), and the second loop iterates over all the states within

a partition — this is equivalent to a single loop that iterates

over all the concrete states in S.

The complexity of Fourneau’s algorithm is also O(|S|2) [9],

therefore compositionality and partial ordering do not affect

the worst-case time complexity. Since our algorithm is ap-

plied compositionally, however, the state space S is only

that of an individual component. This means that overall,

the complexity can be much better than directly applying

Fourneau’s algorithm. If we have N components, each with a

state space S, then Fourneau’s algorithm has a worst-case time

complexity of O(|S|2N), whereas our compositional algorithm

has complexity O(N |S|2A), where A is the number of distinct

action types in the PEPA model. This excludes the cost of

expanding the Kronecker form, but we only expand the lumped

Markov chain, which is much smaller than the original.

VI. AN EXAMPLE

We have implemented the stochastic bounding algorithm

presented in the previous section as part of the PEPA plug-in

for Eclipse [16], and we will now consider its application to a

PEPA model. Consider the model in Figure 3. This describes

a set of n PCs, which are serviced in a round-robin fashion

by a server. Jobs arrive at computer PC i at rate λi, and the

service rate of the server is µ. The server in state i moves to

state i ⊕ 1 = (i + 1)mod n, after serving a job from PC i
(with the walk activity) or not (with the walkon activity).

Table I shows some results for this model when n = 7
and n = 8, with the rate parameters ω = 10, µ = 11, and

λi = i + 1 (we set a different arrival rate for every computer,

to prevent the model from being lumpable with respect to our

abstraction). The results are shown for two abstractions —

one where we aggregate all the Server ′
i states, and the other

where we also aggregate the Server i states. In the first case,

the abstraction gives an upper bound very close to the actual

probability, but the second case (reducing the model to just

two states) is too coarse, and gives a poor upper bound. This

Number of Aggregated Original Model Stochastic Bound Abstraction ACTMC Abstraction
PCs States States Probability Time (s) States Upper Bound Time (s) States Upper Bound Time (s)

7
None 1792 0.50612 3.1 – – – – – –

Server
′ – – – 8 0.5238 0.1 1024 0.98308 5.9

Server , Server
′ – – – 2 0.88506 0.0 256 0.81517 1.5

8
None 4096 0.51216 23.8 – – – – – –

Server
′ – – – 9 0.5238 0.1 2304 0.98161 14.7

Server , Server
′ – – – 2 0.89796 0.0 512 0.84596 3.2

TABLE I
LONG-RUN PROBABILITY OF BEING IN A Server

′

i STATE

illustrates the difficulty in choosing a good abstraction, and

finding good heuristics is the subject of ongoing work. Note

that the durations in the table show the total time taken to both

perform the abstraction and solve the CTMC.

We can compare the abstraction in this paper to an alter-

native based on compositional abstraction of PEPA models to

abstract CTMCs [17]. To look at long-run properties, we have

implemented a simple value iteration algorithm — this is quite

inefficient, and we expect it could perform much better using

more sophisticated methods such as those in [20]. We used a

direct solver (based on LU-factorisation) for the steady state

computations of CTMCs. We can see that stochastic bounds

considerably out-performs the ACTMC approach for the first

abstraction, but performs worse in the second. In general,

we can expect stochastic bounds to perform well when the

abstraction is close to being lumpable.

VII. CONCLUSIONS

Stochastic bounding is a powerful technique for reducing

the size of a Markov chain, and allows us to obtain bounds

on steady state probabilities. We have applied this compo-

sitionally to PEPA models, allowing us to bound models

where the underlying state space is too large to represent. The

algorithm we have presented and implemented enables these

bounds to be constructed automatically, given an ordering and

partitioning of the state space of each component.

Whilst we have demonstrated the utility of compositional

stochastic bounds, there remain many interesting future re-

search directions. Both the choice of the ordering on the state

space and its abstraction affect the precision of the bounds

that we obtain. Our current approach is to provide a heuristic

to choose the ordering (placing the states we are interested

in at the top of the ordering), and to provide a graphical

interface in our tool [16] to allow the modeller to easily

experiment with different abstractions. In the future, it would

be interesting to see if these techniques could be combined

with counterexample-guided abstraction refinement [10], to

automatically find good abstractions for a given property.

In summary, stochastic bounding is a useful method for

analysing performance models, and by applying it composi-

tionally to PEPA, we feel that we have widened its application.

ACKNOWLEDGEMENTS

We would like to thank Jane Hillston, Joost-Pieter Katoen,

and Perdita Stevens for their many insightful comments and

feedback on the work in this paper. This work was supported

by a Microsoft Research European Scholarship, and by the

Danish Research Council (FTP grant 09-073796).

REFERENCES

[1] The PEPA plug-in for Eclipse. Available to download from:
http://www.dcs.ed.ac.uk/pepa/tools/plugin/.

[2] O. Abu-Amsha and J.-M. Vincent. An algorithm to bound functionals
of Markov chains with large state spaces. In 4th INFORMS Conference

on Telecommunications, 1998.
[3] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press,

2008.
[4] M. Bernardo. Non-bisimulation-based Markovian behavioral equiva-

lences. Journal of Logic and Algebraic Programming, 72(1):3–49, 2007.
[5] D. Daly. Bounded aggregation techniques to solve large Markov models.

PhD thesis, 2005.
[6] P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reduction and

refinement strategies for probabilistic analysis. In Process Algebra and

Probabilistic Methods: Performance Modeling and Verification, volume
2399 of LNCS, pages 335–372. Springer, 2002.

[7] L. de Alfaro. How to specify and verify the long-run average behavior
of probabilistic systems. In Proceedings of LICS ’98, pages 454–465.
IEEE Computer Society, 1998.

[8] J.-M. Fourneau and L. Kloul. A precedence PEPA model for perfor-
mance and reliability analysis. In Proceedings of EPEW 2006, volume
4054 of LNCS, pages 1–15. Springer, 2006.

[9] J.-M. Fourneau, M. Lecoz, and F. Quessette. Algorithms for an
irreducible and lumpable strong stochastic bound. Linear Algebra and

its Applications, 386:167–185, 2004.
[10] H. Hermanns, B. Wachter, and L. Zhang. Probabilistic CEGAR. In

Proceedings of CAV ’08, pages 162–175. Springer, 2008.
[11] J. Hillston. A Compositional Approach to Performance Modelling.

Cambridge University Press, 1996.
[12] J. Hillston and L. Kloul. An efficient Kronecker representation for PEPA

models. In Proceedings of PAPM-PROBMIV ’01, volume 2165 of LNCS,
pages 120–135. Springer, 2001.

[13] J.-P. Katoen, D. Klink, M. Leucker, and V. Wolf. Three-valued
abstraction for continuous-time Markov chains. In Proceedings of CAV

’07, volume 4590 of LNCS, pages 316–329. Springer, 2007.
[14] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer, 1976.
[15] B. Plateau. On the stochastic structure of parallelism and synchro-

nization models for distributed algorithms. SIGMETRICS Performance

Evaluation Review, 13(2):147–154, 1985.
[16] M.J.A. Smith. Abstraction and model checking in the PEPA plug-in for

Eclipse. In Proceedings of QEST ’10, pages 155–156. IEEE, 2010.
[17] M.J.A. Smith. Compositional abstraction of PEPA models for transient

analysis. In Proceedings of EPEW 2010, volume 6342 of LNCS, pages
252–267. Springer, 2010.

[18] D. Stoyan. Comparison Methods for Queues and Other Stochastic

Models. Wiley & Sons, 1983.
[19] M. Tremolieres, J.M. Vincent, and B. Plateau. Determination of the

optimal stochastic upper bound of a Markovian generator. Technical
Report Rapport de Recherche RR 906-I, 1992.

[20] R. Wimmer, B. Braitling, B. Becker, E.M. Hahn, P. Crouzen, H. Her-
manns, A. Dhama, and O. Theel. Symblicit calculation of long-run
averages for concurrent probabilistic systems. In Proceedings of QEST

’10, pages 27–36. IEEE Computer Society, 2010.

APPENDIX

Theorem 15. If M = (S, r,P , L) ≤rst M ′ = (S, r′,P ′, L)
and for all s ∈ S, r(s) ≤ r′(s), then M ≤st M ′.

Proof: For any λ that is not exceeded in magnitude by

any element of ra or r′a, we need to show that
ra(Pa−I)

λ
+

I ≤st
r′

a(P ′
a−I)
λ

+I , by the definition of the stochastic ordering

on CTMCs (i.e. applying uniformisation). This corresponds to

showing that:

raPa

λ
+

(

1−
ra

λ

)

I

≤st
r′aP ′

a

λ
+

(

1−
r′a
λ

)

I

remembering that ra and r′a are apparent rate functions, which

can be written as vectors. By the definition of the strong

stochastic ordering, this requires that, for each row s and for

all states s′:

ra(s)

λ

∑

t≻s′

Pa(s, t) +

(

1−
ra(s)

λ

)

1s′≺s

≤
r′a(s)

λ

∑

t≻s′

P ′
a(s, t) +

(

1−
r′a(s)

λ

)

1s′≺s

where 1s′≺s is an indicator value, equal to one if the condition

s′ ≺ s holds, and to zero otherwise. If we are above the

diagonal element (i.e. the indicator term evaluates to zero),

then the relation holds since ra(s) ≤ r′a(s) and Pa ≤st P ′
a.

Otherwise, we have, for s′ ≺ s:

ra(s)

λ

∑

t≻s′

Pa(s, t)−
ra(s)

λ

≤
r′a(s)

λ

∑

t≻s′

P ′
a(s, t)−

r′a(s)

λ

which, on re-arranging, gives:

r′a(s)

ra(s)
≤

1−
∑

t≻s′

Pa(s, t)

1−
∑

t≻s′

P ′
a(s, t)

But since we know that the left-hand side is less than or equal

to the minimum of all possible ratios on the right-hand side,

this holds for all s′.

Theorem 16. If M = (S, r,P , L) is rate-wise monotone, and

for all s ≺ s′ ∈ S, r(s) ≤ r(s′), then M is monotone.

Proof: For any λ that is not exceeded in magnitude by

any element of ra, we need to show that
ra(Pa−I)

λ
+ I is

monotone, by the definition of monotonicity for CTMCs (i.e.

applying uniformisation). This corresponds to showing that:

raPa

λ
+

(

1−
ra

λ

)

I

is monotone, where we write the apparent rate function ra as

a vector. By the definition of monotonicity, we require for all

states s and s′, such that s ≺ s′ (two rows that we compare),

and for all states s′′ (elements along the row):

ra(s)

λ

∑

t≻s′′

Pa(s, t) +

(

1−
ra(s)

λ

)

1s′′≺s

≤
ra(s′)

λ

∑

t≻s′′

Pa(s′, t) +

(

1−
ra(s′)

λ

)

1s′′≺s′

If we are above the diagonal element in both rows (i.e. the

indicator terms 1s′′≺s and 1s′′≺s′ both evaluate to zero), then

the relation holds since ra(s) ≤ ra(s′) and Pa is monotone.

Otherwise, we have to consider two cases: when s ≺ s′′ ≺ s′,
and when s′′ ≺ s.

When s ≺ s′′ ≺ s′, we have:

ra(s)

λ

∑

t≻s′′

Pa(s, t)

≤
ra(s′)

λ

∑

t≻s′′

Pa(s′, t) + 1−
ra(s′)

λ

which holds as before, since 1− ra(s′)
λ

> 0.

Finally, when s′′ ≺ s, we have:

ra(s)

λ

∑

t≻s′′

Pa(s, t)−
ra(s)

λ

≤
ra(s′)

λ

∑

t≻s′′

Pa(s′, t)−
ra(s′)

λ

which, on re-arranging, gives:

ra(s′)

ra(s)
≤

1−
∑

t≻s′′

Pa(s, t)

1−
∑

t≻s′′

Pa(s′, t)

But since we know that the left-hand side is less than or equal

to the minimum of all possible ratios on the right-hand side,

this holds for all s′′.

Theorem 22 (Monotonicity). Let two PEPA components, C1

and C2, occur in contexts C1 and C2 respectively, where C1 ∈
C2 and C2 ∈ C1. Let C1 be internally bounded by B1

int and

C2 by B2
int , for action type a.

If the CTMC components JC1Ka = (S1, r1,a,P1,aL1) and

JC2Ka = (S2, r2,a,P2,aL2) are context-bounded rate-wise

monotone by B1
int and B2

int respectively, then JC1Ka � JC2Ka

is context-bounded rate-wise monotone by the internal bound

B3
int of the context C1∩C2 of C1 ⊲⊳

L
C2, for all action sets L.

To prove this theorem, we will first establish the following

two lemmas. Lemma 26 shows that the Kronecker product

preserves monotonicity, and Lemma 27 shows that the mini-

mum of two monotone functions is also monotone. We omit

the subscript a for clarity, hence we write Pi in place of Pi,a,

and ri in place of ri,a for i ∈ { 1, 2 }:

Lemma 26. Let P1 and P2 be monotone stochastic matrices

describing the PEPA components C1 and C2 respectively,

which have state spaces (S1,≺1) and (S2,≺2). Then P1⊗P2

is also monotone under the lifted orderings ≺L
1 and ≺L

2 on

S1 × S2.

Proof: Consider states (s1, s2) ≺
L
1 (s′1, s

′
2), recalling that

this implies that s1 ≺1 s′1 and ¬∃s′′2 . s′′2 ≺2 s2. We need to

show that the following inequality holds, for all s ∈ ds(C1)
and t ∈ ds(C2):

∑

(s′,t′)≻L
1
(s,t)

P1(s1, s
′)P2(s2, t

′)

≤
∑

(s′,t′)≻L
1
(s,t)

P1(s
′
1, s

′)P2(s
′
2, t

′)

But in order for there to be any states (s′, t′) ≻ (s, t), t must

be the smallest state in (S2,≺2). Hence this is equivalent to:
∑

s′≻1s

∑

t′∈S2

P1(s1, s
′)P2(s2, t

′)

≤
∑

s′≻1s

∑

t′∈S2

P1(s
′
1, s

′)P2(s
′
2, t

′)

which we rewrite to give:
∑

s′≻1s

P1(s1, s
′) ≤

∑

s′≻1s

P1(s
′
1, s

′)

This holds since P1 is monotone under (S1,≺1). The proof

of monotonicity under (S1 × S2,≺
L
2) follows similarly.

Lemma 27. Let r1 and r2 be monotone functions. Then

r3(s1, s2) = min{ r1(s1), r2(s2) } is also monotone, under

the orderings (S1 × S2,≺
L
1) and (S1 × S2,≺

L
2).

Proof: Consider states (s1, s2) ≺
L
1 (s′1, s

′
2). By definition,

s1 ≺1 s′1 and either s2 ≺1 s′2 or s2 = s′2. There are two cases

to consider:

Case 1: min{ r1(s
′
1), r2(s

′
2) } = r1(s

′
1). Then:

min{ r1(s1), r2(s2) } ≤ r1(s1)
≤ r1(s

′
1)

≤ min{ r1(s
′
1), r2(s

′
2) }

Case 2: min{ r1(s
′
1), r2(s

′
2) } = r2(s

′
2). Then:

min{ r1(s1), r2(s2) } ≤ r2(s2)
≤ r2(s

′
2)

≤ min{ r1(s
′
1), r2(s

′
2) }

Hence r3 is monotone with respect to (S1 × S2,≺
L
1). The

proof of monotonicity under (S1 × S2,≺
L
2) follows similarly.

Proof: [Theorem 22] Let (S1,≺1) and (S2,≺2) be the

state spaces of components C1 and C2 respectively. We will

show that min{ r1, r2 }(P1⊗P2−I) is monotone with respect

to (S1 × S2,≺
L
1).

We know from Lemma 26 that the matrix P1 ⊗ P2 is

monotone, and from Lemma 27 that the apparent rate function

min{ r1, r2 } is monotone increasing. Hence, for all states

(s1, s2) ≺
L
1 (s′1, s

′
2), we need to show that:

max

{

B3
int ,

min{ r1(s
′
1), r2(s

′
2) }

min{ r1(s1), r2(s2) }

}

≤ min
(t1,t2)≺L

1
(s1,s2)



















1−
∑

(t′
1
,t′

2
)≻L

1
(t1,t2)

P1(s1, t
′
1)P2(s2, t

′
2)

1−
∑

(t′
1
,t′

2
)≻L

1
(t1,t2)

P1(s
′
1, t

′
1)P2(s

′
2, t

′
2)



















where B3
int is the internal bound of the context C′′ of C ⊲⊳

L
C ′:

Let (t1, t2) be the state under which the ratio on the right

hand side is at a minimum. Since t1 ≺1 s1 by definition of

≺L
1 , we know that the following relation holds:

max

{

B1
int ,

r1(s
′
1)

r1(s1)

}

≤

1−
∑

t′
1
≻1t1

P1(s1, t
′
1)

1−
∑

t′
1
≻1t1

P1(s
′
1, t

′
1)

Furthermore, since by definition B1
int ≥

r2(s
′
2
)

r2(s2)
, B2

int ≥
r1(s

′
1
)

r1(s1)
,

and B3
int ≤ min{B1

int , B
2
int}, we can infer that:

max

{

B3
int ,

r1(s
′
1)

r1(s1)
,
r2(s

′
2)

r2(s2)

}

≤ max

{

B1
int ,

r1(s
′
1)

r1(s1)

}

To complete the proof, we need to make use of the following

observation:

Observation 28. For all positive a, b, c, d ∈ R:

max
{ a

b
,
c

d

}

≥
min{ a, c }

min{ b, d }

since a
b
≥ min{ a,c }

b
and c

d
≥ min{ a,c }

d
.

Using this observation, and the fact that t2 must be the

smallest state in (S2,≺2) by the definition of ≺L
1 :

max

{

B3
int ,

min{ r1(s
′
1), r2(s

′
2) }

min{ r1(s1), r2(s2) }

}

≤ max

{

B3
int ,

r1(s
′
1)

r1(s1)
,
r2(s

′
2)

r2(s2)

}

≤ max

{

B1
int ,

r1(s
′
1)

r1(s1)

}

≤

1−
∑

t′
1
≻1t1

P1(s1, t
′
1)

1−
∑

t′
1
≻1t1

P1(s
′
1, t

′
1)

=

1−
∑

t′
1
≻1t1

P1(s1, t
′
1)

∑

t′
2
∈S2

P2(s2, t
′
2)

1−
∑

t′
1
≻1t1

P1(s
′
1, t

′
1)

∑

t′
2
∈S2

P2(s
′
2, t

′
2)

≤

1−
∑

(t′
1
,t′

2
)≻L

1
(t1,t2)

P1(s1, t
′
1)P2(s2, t

′
2)

1−
∑

(t′
1
,t′

2
)≻L

1
(t1,t2)

P1(s
′
1, t

′
1)P2(s

′
2, t

′
2)

= min
(t1,t2)≺(s1,s2)



















1−
∑

(t′
1
,t′

2
)≻L

1
(t1,t2)

P1(s1, t
′
1)P2(s2, t

′
2)

1−
∑

(t′
1
,t′

2
)≻L

1
(t1,t2)

P1(s
′
1, t

′
1)P2(s

′
2, t

′
2)



















The proof of monotonicity under (S1 × S2,≺
L
2) follows

similarly.

Thus context-bounded rate-wise monotonicity is preserved

by �.

Theorem 23 (Lumpability). Let C1 and C2 be PEPA models

with abstractions (S♯
1, α1) and (S♯

2, α2) respectively. Then for

all action types a, if (S♯
1, α1) is a lumpable abstraction of

JC1Ka and (S♯
2, α2) is a lumpable abstraction of JC2Ka, then

(S♯
1×S♯

2, α1×α2) is a lumpable abstraction of JC1Ka�JC2Ka.

Proof: Observe that JC1Ka � JC2Ka = JCKa, for C =
C1 ⊲⊳

{ a }
C2. Since lumpability and strong bisimilarity are the

same, it is clear that JC1Ka is strongly bisimilar to the

lumped CTMC component Abs(S♯
1
,α1)

(JC1K
♯
a), and similarly

that JC2Ka is strongly bisimilar to Abs(S♯
2
,α2)

(JC2K
♯
a).

It was proven in [11] that the PEPA cooperation combinator

preserves strong bisimilarity, and therefore ordinary lumpabil-

ity, and so it follows that JCKa is strongly bisimilar to:

Abs(S♯
1
,α1)

(JC1Ka) � Abs(S♯
2
,α2)

(JC2K
♯
a) = Abs(S♯,α)(JCK)

where S♯ = S♯
1×S♯

2 and α = α1×α2. Hence (S♯
1×S♯

2, α1×α2)
is a lumpable abstraction of JC1Ka � JC2Ka.

Theorem 24 (Stochastic Order). Consider the PEPA compo-

nents Ci and C ′
i, such that JCiKa = (Si, ri,a,Pi,aLi) and

JC ′
iKa = (S′

i, r
′
i,a,P ′

i,aL′
i) for i ∈ {1, 2} and action type

a. Let JCiKa ≤
Bi

comp

rst JC ′
iKa, with contexts Ci ≤st C

′
i, where

Bi
comp is the comparative bound of Ci and C′i. If B3

comp is the

comparative bound of the contexts C1∩C2 and C′1∩C
′
2, then

JC1Ka � JC2Ka ≤
B3

comp

rst JC ′
1Ka � JC ′

2Ka.

Proof: For clarity, we will omit the subscript a, and

hence write Pi in place of Pi,a, and ri in place of ri,a for

i ∈ { 1, 2 }. We omit the proofs that P1 ⊗ P2 ≤st P ′
1 ⊗ P ′

2

and that min{ r1, r2 }(s1, s2) ≤ min{ r′1, r
′
2 }(s1, s2) for all

(s1, s2) ∈ S1 × S2, since they are very similar to Lemma 26

and Lemma 27 from the proof of Theorem 22 (Monotonicity).

Let (S1,≺1) and (S2,≺2) be the state spaces of components

C1, C
′
1 and C2, C

′
2 respectively. We will show that the matrix

min{ r′1, r
′
2 }(P

′
1 ⊗ P ′

2 − I) is a context-bounded rate-wise

upper bound of min{ r1, r2 }(P1 ⊗ P2 − I), with respect to

the ordering (S1 × S2,≺
L
1).

We need to show that the following inequality holds, for all

states (s1, s2):

max

{

B3
comp ,

min{ r′1(s1), r
′
2(s2) }

min{ r1(s2), r2(s2) }

}

≤ min
(t1,t2)≺L

1
(s1,s2)



















1−
∑

(t′
1
,t′

2
)≻L

1
(t1,t2)

P1(s1, t
′
1)P2(s2, t

′
2)

1−
∑

(t′
1
,t′

2
)≻L

1
(t1,t2)

P ′
1(s1, t

′
1)P

′
2(s2, t

′
2)



















Let (t1, t2) be the state for which the ratio on the right hand

side is at a minimum. Since t1 ≺1 s1 by definition of ≺L
1 , we

know that the following relation holds:

max

{

B1
comp ,

r′1(s1)

r1(s1)

}

≤

1−
∑

t′
1
≻1t1

P1(s1, t
′
1)

1−
∑

t′
1
≻1t1

P ′
1(s1, t

′
1)

Furthermore, since by definition of the comparative bounds,

B1
comp ≥

r′
2
(s2)

r2(s2)
, and B3

comp ≤ min{B1
comp , B2

comp }, we can

infer that:

max

{

B3
comp ,

r′1(s1)

r1(s1)
,
r′2(s2)

r2(s2)

}

≤ max

{

B1
comp ,

r′1(s1)

r1(s1)

}

To complete the proof, we make use of Observation 28 from

the proof of Theorem 22 (Monotonicity), and the fact that t2
must be the smallest state in (S2,≺2) by the definition of ≺L

1 :

The proof of stochastic ordering under (S1 × S2,≺
L
2)

follows similarly.

Thus the context-bounded rate-wise stochastic ordering is

preserved by �.

