
QAPL 2007

Stochastic Modelling of Communication

Protocols from Source Code

Michael J. A. Smith1 ,2

Laboratory for Foundations of Computer Science
University of Edinburgh

Edinburgh, United Kingdom

Abstract

A major development in qualitative model checking was the jump to verifying properties of source code
directly, rather than requiring a separately specified model. We describe and motivate similar extensions
to quantitative/performance analyses, with particular emphasis on communication protocols. The central
aim is to extract a stochastic model (in the PEPA language) from such source code.
We construct a model compositionally, so that each function in the system corresponds to a sequential PEPA
process. Such a process is derived by abstract interpretation over the state machine of a function, using
interval abstraction to represent linear expressions of integer variables. We illustrate this by an analysis of
a simple protocol.

Keywords: Performance modelling, Stochastic process algebra, Static analysis, Communication protocols

1 Introduction

Communication protocols are notoriously difficult to get right. Not only do the

usual challenges of distributed and concurrent programming apply, but they provide

a service that other applications depend upon. Thus the performance of a protocol

is critical to its success. For example, if a routing protocol fails to react quickly

to changes in topology, the network can be brought to a standstill. Similarly, a

reliable transport-layer protocol must be able to maintain a reasonable throughput,

even when the network is congested. Because of this, it is vital to understand the

performance characteristics of these protocols.

There are currently two approaches to analysing such performance properties;

either we dynamically take measurements from the real system, or we build an ab-

stract model, which can then be analysed. The former includes techniques such

as code profiling and operational analysis (as applied to the measurements taken),

which can give accurate figures if we have access to the deployed system. The

1 EPSRC, Microsoft Research
2 Email:M.J.A.Smith@sms.ed.ac.uk

c©2006 Published by Elsevier Science B. V.

mailto:M.J.A.Smith@sms.ed.ac.uk

Smith

latter includes simulation and mathematical modelling (at various degrees of ab-

straction), which are much more useful for explaining the behaviour of the system,

and predicting its behaviour before deployment, but require a separate model to be

developed. Simulations are often complicated, and may contain bugs. On the other

hand, mathematical modelling is beyond the skill of the typical programmer, and

also prone to mistakes.

Stochastic extensions to existing formalisms in concurrency theory, such as pro-

cess algebra, have considerably mitigated this last problem. In particular, the Per-

formance Evaluation Process Algebra (PEPA) [9] is a high-level and compositional

language, in which models describe continuous time Markov chains (CTMCs). This

is arguably more intuitive, and less prone to error, than working directly with these

mathematical structures.

Despite these advances, performance models are still very much removed from

implementations. Work has been done to derive PEPA models from UML [3], but

this is at a higher level than the implementation itself. In most cases, the model

is validated empirically, by comparing its predictions to measurements taken from

the real system (and refining the model if necessary). However, when the source

code of the system is available, we can obtain a much more definite handle on what

it means for a model to be correct. In this paper we present the first steps towards

solving this problem, by describing an abstraction to a performance model, directly

from source code.

In the world of qualitative model checking, where we are concerned with just

the possibility of certain behaviours, this step has already been taken. SLAM [2]

and Blast [8] both use predicate abstraction and counter-example guided refinement

to verify such properties directly on real code, written in C. However, we cannot

simply apply the same approach in a quantitative setting, since we do not have a

well-defined notion of counter-example. Indeed, the problem is made much more

difficult since we need to determine the probability of control-flow decisions, given

some abstract environment of the program’s variables. The search space of such

abstractions is simply too large to explore by a sequence of refinements, and so we

must avoid initially over-abstracting the program.

The benefits of such a technique for model extraction are numerous, and can be

applied to more general distributed systems (web services being a prime example),

rather than just communication protocols. Our main motivations are as follows.

Firstly, we want to encourage wider application of performance analysis techniques,

by providing a tool that non-specialists can use. Microsoft R©’s Static Driver Veri-

fier (SDV) [1] is a good example of how theory can be successfully applied in this

way. Secondly, we want to allow non-functional testing to take place throughout

the development cycle, rather than just at the end. We can do this by enabling

performance evaluation of partially completed code. Finally, we wish to allow devel-

opers to verify that a protocol (or more general distributed system) satisfies some

performance contract, or service-level agreement (SLA). The work in [7] takes some

steps towards this, but at a more abstract level, in the context of web services.

In this paper, we begin by introducing the structure of the protocols we will be

analysing, and the language of the source code we consider, in Section 2. We then

briefly introduce the PEPA language in Section 3. In the following two sections

2

Smith

(4 and 5 respectively), we describe how to construct a PEPA model first at the

structural level (i.e. how to build a model of the system from models of the functions)

and then at the functional level (i.e. how to build a model of a function from its

source code). To illustrate this, we analyse a simple transport protocol in Section 6.

We conclude with some comments on future work in Section 7.

2 Communication Protocols and Source Code

In this paper, we will limit our analysis to that of end-to-end communication proto-

cols. In other words, we will not consider hop-by-hop protocols, such as those used

for routing, since representing the topology of such systems leads to an unmanage-

able state space. We do, however, wish to deal with real protocols, and so we need

to analyse real-world languages. In this case, that means C.

There exist a number of tools for handling C, such as CCured [16], which together

with the C Intermediate Language (CIL) [15] provides a cleaner (and type-safe)

framework for analysis. However, even with the aid of these tools, the analysis of

arbitrary programs is uncomputable (if we wish to retain some notion of the error

involved). Fortunately, most protocols do not exhibit complex looping or recursive

behaviour, and so we can justifiably consider only a subset of the language.

Let us take a subset of C, with only integer variables, boolean variables and

enumeration types. In addition, we impose the following restrictions:

(i) No pointers. We intend to relax this in future work, but that is beyond the

scope of this paper.

(ii) No recursion. This is beyond our ability to model in a Markovian setting, due

to the memoryless property of states.

(iii) We allow only linear conditions of the form
∑n

i=1 aixi {<,≤,=,≥, >} c, where

ai and c are integer constants.

(iv) Loop variables must be memoryless with respect to previous iterations of the

loop, or else vary linearly with time. In other words, on each iteration, a

loop variable must either be set independently of its previous value, or incre-

mented/decremented each time by a constant.

The restriction on conditions is quite a strict one. In particular, we can see that pro-

cedures like exponential backoff do not satisfy this. We expect that this restriction

can be relaxed somewhat, but that is the subject of future work.

3 The PEPA Language

The target of our abstraction is a PEPA model. In PEPA, a system is a set of

concurrent components, which are capable of performing activities. An activity

a ∈ Act is a pair (α, r), where α ∈ A is its action type, and r ∈ R+ ∪ {⊤} is

the rate of the activity. This rate parameterises an exponential distribution, and if

unspecified (denoted ⊤), the activity is said to be passive. This requires another

component in cooperation to actively drive the rate of this action. PEPA terms

3

Smith

Fig. 1. The structure of an end-to-end protocol

have the following syntax:

P := (α, r).P | P1 + P2 | P1 ��
L

P2 | P/L | A

We briefly describe these combinators as follows. For more detail, we refer the

reader to [9].

• Prefix ((α, r).P): the component can carry out an activity of type α at rate r to

become the component P .

• Choice (P1 +P2): the system may behave either as component P1 or P2. The cur-

rent activities of both components are enabled, and the first activity to complete

determines which component proceeds. The other component is discarded.

• Cooperation (P1 ��
L

P2): the components P1 and P2 synchronise over the cooper-

ation set L. For activities whose type is not in L, the two components proceed

independently. Otherwise, they must perform the activity together, at the rate

of the slowest component. At most one of the components may be passive with

respect to this action type.

• Hiding (P/L): the component behaves as P , except that activities whose type is

in L are hidden, and appear externally as the unknown type τ .

• Constant (A
def
= P): the name A is assigned to component P .

The operational semantics of PEPA defines a labelled multi-transition system, which

induces a derivation graph for a given component. Since the duration of a transi-

tion in this graph is given by an exponentially distributed random variable, this

corresponds to a CTMC.

4 Structural Modelling

Assuming that we can model the behaviour of a function, what does a model of

the system look like? For an end-to-end protocol, we have two clients, A and B,

which communicate over a network. The operation of the protocol is driven by

events, which fall into three categories – user interactions (i.e. telling the protocol

to do something), receiving packets over the network, and timeouts. This is shown

schematically in Figure 1, and leads to the following general form of the PEPA

system equation, where the action sets U , T , R and S define the interfaces between

the components:

(User ��
UA

ClientA ��
TA

Timer) ��
SAB∪RBA

Network ��
SBA∪RAB

(User ��
UB

ClientB ��
TB

Timer)

4

Smith

Fig. 2. The three ways of modelling a function call

Furthermore, a client X will have the following form at the top-level:

ClientX
def
=

X

i

(recv i,⊤).RecvX i +
X

j

(usercall j ,⊤).UserCallX j + (timeout ,⊤).TimeoutX

where i ranges over the abstract environment space of packets (i.e. it encodes an

abstracted version of the packet contents), and j over that of the user interface

(i.e. the API calls, and corresponding arguments, that the user can make). The

states RecvX , UserCallX , and TimeoutX correspond to models of the corresponding

functions on the client, whose construction is described in Section 5. Note that this

implies a single-threaded client, since only one function can be called at a time. We

can model multi-threaded clients by composing the functions in parallel.

The network can be modelled in a number of ways, depending on the properties

required. When the model of the system is constructed, we expect the user to choose

the network from a library of components, so that they do not need to write the

PEPA process themselves. For example, a half-duplex network with probability p

of packet loss would look like the following:

Network
def
=

X

i

(A sendi,⊤).NetworkAB i +
X

j

(B sendj ,⊤).NetworkBAj

NetworkAB i
def
=

X

j

(B recv i, (1 − p).rnetwork).Network + (τ, p.rnetwork).Network

NetworkBAj
def
=

X

i

(A recv j , (1 − p).rnetwork).Network + (τ, p.rnetwork).Network

where i and j range of the abstract environment of packets sent by clients A and B

respectively.

It should be apparent that we encode the passing of both arguments and return

values (when calling a function) and the contents of packets (when communication

across the network) by an interface of actions. We will consider this interface in

more detail in the next section, but first we must discuss how a function call can be

modelled. When we abstract a function, we will reduce each sequential block to a

single transition in the model; namely a single action, with a single rate. Given this,

there are three fundamental approaches to modelling a function call, as illustrated

in Figure 2:

(i) Abstract the call to a single transition to the result state. This assumes that

the function executes at a fixed rate, irrespective of the input, but this is often

5

Smith

good enough for our purposes, and simplifies the model considerably.

(ii) Explicitly embed a model of the function. This is more general, and is appropri-

ate when the function has a more complex behaviour that we wish to capture.

The disadvantage is that we must remember which environment we were in

before calling the function, so that we can recover the correct state afterwards.

In the worst case, this means that we need a separate copy of the function for

each environment we call it from, and so it is undesirable unless essential to

the behaviour of the model. We assume that such a call is synchronous.

(iii) Model the function as a separate process running in parallel, which synchronises

over call and return actions. This separates the functionality of one function

from another, at the expense of an exponential blowup of state when we do

a Markovian analysis. We will use this abstraction when two components are

communicating over the network, and the call is assumed to be asynchronous.

We rely on user annotations in the source code to tell us how to analyse each

function. In the first case, the user must also provide a summary of the function’s

behaviour (i.e. how it affects the environment of the caller), so that we can model

the system without having to analyse every function (e.g. libraries, system calls,

etc.). Note that the second and third cases are essentially equivalent, except for

whether the call is synchronous or asynchronous.

Once we have derived models for all the functions in the system, we must end

up with a set of ‘top-level’ functions; namely those that are invoked externally

(by a network event, timeout, or user call). These fit into the component ClientX

described previously, which in turn forms part of the system equation. Other than

having the user pick out which are the top-level functions, and how the network

and users behave, the system equation can be constructed automatically – the

synchronisation sets are just the interfaces we compute in the next section.

5 Functional Modelling

Up to now, we have looked only at how to compose a model of the system from

its sequential components. These sequential components correspond to functions

in the source code, and we will now describe their abstraction. There are two key

ideas involved in this – that of abstracting the control-flow of the program, and that

of abstracting the environment of its variables.

The steps that we will take can be summarised in four steps. Firstly, we convert

the program to an abstract syntax, in Static Single Assignment (SSA) form. From

here, we derive the control-flow state space. We define this as the fixed point of a

reduction →f , but it can be viewed intuitively in terms of paths on the control-flow

graph. Thirdly, we determine the data environment space. We abstract arithmetic

expressions to intervals over the integers, for which considerations of independence

are of vital importance. Finally, the PEPA model can be built. This involves

determining the probability of moving from one state to another, which can be

phrased as a conditional probability on the data environments of reachable states

(in the control-flow).

6

Smith

5.1 Abstract Syntax and SSA

In order to proceed, we must first convert the function (written into the subset of C

that we defined) into an abstract syntax that will be easier to analyse. A function

definition has the form f(X1, . . . ,Xn) := C, where the body of the function is a

command C, defined as follows:

C := skip | return E | X := E | X := g(X1, . . . ,Xn)

| C1 ; C2 | (if B then C1 else C2) ; Φ | while Φ ; B do C

Here, X are variables (which we limit to integers and booleans), f, g are functions,

E are arithmetic expressions, B are boolean expressions, and Φ are sequences of

φ-functions, which will shortly be defined. E and B must be linear, so that any

expression E can be written in the form
∑

i aiXi, where ai are constants. It should

be clear how to convert a C function to this form, and we will therefore adopt this

syntax from now on.

To simplify the analysis of variable dependencies, we also convert the function

into SSA form [17]. This ensures that each variable is only assigned to (statically)

once, so we need not worry about a variable name being reused later, in an indepen-

dent context. To transform the function, we alter its control-flow graph in two ways.

First, at each node in the control-flow graph with more than one incoming edge (a

join node), and for each set of conflicting definitions of the same variable, we insert

a φ-function, φ(d1, . . . , dn), such that φ(d1, . . . , dn) = di if the node is reached via

the ith in-edge. We then rename all variables so that each is only statically assigned

to once.

In our abstract language, each node will have at most two in-edges (nested if-

statements have seperate join nodes), so the arity of all φ functions will be two. If

Φ is a sequence of n φ-functions, X1 := φ(Y1, Z1) ; . . . ; Xn:= φ(Yn, Zn), we define

the following projections:

ΦL = X1 := Y1 ; . . . ; Xn:= Yn

ΦR = X1 := Z1 ; . . . ; Xn:= Zn

5.2 Control-Flow State Derivation

We can now define a state in our abstract system as a 4-tuple, 〈L,C, P,U〉, consisting

of a label L, a command C, a predicate P and an update U . The predicate is a

boolean expression on the program variables that is valid on entering the state. The

update is a partial finite map from variables to expressions, indicating the change of

state that takes place at that node. The command is the remainder of the program,

to be executed after leaving the state.

To allow us to represent a function by these states, we introduce two more atomic

commands; goto and call. The first of these specifies a set of labels, L1, . . . , Ln,

which determine the set of reachable states that may follow. The second encodes

the assignment of a variable X to a function call g, followed by a continuation L.

The syntax of commands is extended as follows:

C := goto{L1, . . . , Ln} | call(X, g, L)(E1 , . . . , En)

7

Smith

Finally, before we derive the control-flow state space, we need a notion of environ-

ment variable. There is no need for every variable to be represented in the abstract

environment, as some will be uniquely determined by the others. If this is the case,

we can eliminate the variable by substituting for its definition, hence it will never

need to appear in an update U . Informally, a variable is an environment variable

if it is an input to the function, the return value of a function call, or if its defi-

nition reaches over the backward branch of a loop. Formally, we define a function

I : C → X → X, which maps each environment variable onto an equivalence class:

I(skip) = {}

I(return E) = {}

I(X := E) = {}

I(X := g(E1, . . . , En)) = {X 7→ X}

I(X1 := φ(X2,X3)) = {X1 7→ X1,X2 7→ X1,X3 7→ X1}

I((if B then C1 else C2) ; Φ) = I(C1) ∪ I(C2)

I(while B do Φ ; C) = I(Φ) ∪ I(C)

I(C1 ; C2) = I(C1) ∪ I(C2)

I(f(X1, . . . ,Xn) := C) = {X1 7→ X1, . . . ,Xn 7→ Xn} ∪ I(C)

If X ∈ dom(I(C)) then X is an environment variable in C. Furthermore, if

I(C)(X) = I(C)(Y), then X and Y are the same environment variable. To simplify

notation, if we have a function f defined as f(X1, . . . ,Xn) := C, then we define

Vf to be I(f(X1, . . . ,Xn):=C). In other words, Vf determines the environment

variables of the function f .

We can now define the state space of an abstract function as the fixed point of a

reduction, →f . This reduction takes a 4-tuple, which represents some state in the

function’s execution, and partially evaluates the command. In general, this partial

evaluation leads to a set of possible states, because the control-flow decisions are

not completely determined statically. We define →f as follows, where L′ and L′′

are fresh labels:

〈L, C, P, U〉 →f {〈L, C, P, U〉} if C is atomic (call, goto or return)

〈L, (skip) ; C, P, U〉 →f {〈L, C, P, U〉}

〈L, (return E) ; C, P, U〉 →f {〈L, return E, P, U〉}

〈L, (X := E) ; C, P, U〉 →f {〈L, C{E/X}, P, U〉} if X /∈ dom(Vf)

〈L, (X := E) ; C, P, U〉 →f

˘˙

L, C, P, U{E/Vf (X)}
¸¯

if X ∈ dom(Vf)

〈L, (X := g(E1, . . . , En)) ; C, P, U〉 →f

(

〈L, call(X, g, L′)(E1, . . . , En), P, U〉 ,

〈L′, C, ⊤, {}〉

)

〈L, (if B then C1 else C2); Φ ; C3, P, U〉 →f

(

〈L, C1 ; ΦL ; C3, P ∧ B, U〉 ,

〈L, C2 ; ΦR ; C3, P ∧ ¬B, U〉

)

〈L, (if B then C1 else C2) ; Φ, P, U〉 →f

(

〈L, C1, P ∧ B, U〉 ,

〈L, C2, P ∧ ¬B, U〉

)

〈L, (while B do Φ ; C1) ; C2, P, U〉 →f

8

>

<

>

:

〈L, goto{L′, L′′}, P, U〉 ,

〈L′, C1 ; goto{L′, L′′}, P ∧ B, {}〉 ,

〈L′′, C2, ¬B, {}〉

9

>

=

>

;

Note that we require that a function ends in a return instruction, so all other

commands must be followed by another. The only exception to this is a conditional

8

Smith

statement, which may appear as the final command if both branches terminate in

a return instruction, hence the two cases above.

Informally, this reduction is amalgamating sequential states in the concrete

control-flow graph, and expanding out conditional statements, so that each ab-

stract state represents a path between two interaction points – namely calling or

returning from a function, or reentering a loop. Importantly, in this abstraction, we

only have one set of states for the body of a loop. Hence we can only model a loop

if the probability of reentering it has a trivial dependency with respect to time (as

we will see later).

To compute the fixed point of this reduction, we firstly define ⇒f as a reduction

over sets of states:
t1 →f T1 . . . tn →f Tn

{t1, . . . , tn} ⇒f T1 ∪ . . . ∪ Tn

Now, the abstract state space S(f) of a function f is defined as follows:

S(f) = T iff {〈0, C, ⊤, {}〉} ⇒∗
f T ∧ ∀T ′.T ⇒∗

f T ′ ⇒ T ′ = T

This fixed-point can be shown to exist by induction on the structure of C, under the

assumption that C is well-formed; namely, ∀T. {〈0, C, ⊤, {}〉} ⇒∗
f T ⇒ ∃T ′.T ⇒f

T ′. We will hereafter refer to S(f) as the control-flow states of f .

5.3 Data Environments

As it stands, the state space S(f) is not sufficient as the state space of a stochastic

model of the function. The reason is that the predicate at each state is the weakest

condition that must hold there. We therefore lose all memory of any stronger

conditions that hold (for example, due to the particular path through which we

arrived at the state), which prevents us from communicating these conditions at a

later point (e.g. as a return value).

A further problem with these states is the difficulty in relating the predicates

P to one another. To connect the states together probabilistically, we need to

determine probabilities of the form Pr(P ′
U |P), where P ′

U is the predicate P ′ with

its variables updated by U . Essentially, this is the probability of one set of linear

constraints holding, given another, which can be difficult to determine. We therefore

need to consider a data abstraction, in addition to S(f).

Let Pf be the set of all predicates P in S(f), expressed in the following normal

form, where < ∈ {<,≤,=,≥, >}:

∨

i





∧

j

(

∑

k

aijkxijk

)

< cij ∧
∧

j

pj





where aijk, cij are rational constants, xijk are integer variables, and pj are boolean

variables (atoms). Now, let Ef be the set of all expressions
∑

k akxk in Pf , repre-

sented in vector form, a · x, where x is the image of Vf , expressed as a vector, and

a is a column vector of integers. If there are N unique such expressions, and M

variables (i.e. x has dimensionality M × 1), then the M × N matrix A is defined

by taking its rows to be the vectors a.

9

Smith

To determine the data environment, we need to find a basis for these vectors.

Given our assumption that the environment variables have no hidden dependencies

between one another (i.e. all dependencies are from conditions within the function

in question), the independence of two expressions (in the absense of any other

information) corresponds to orthogonality between their a-vectors. Hence, we can

determine an optimal basis using Principle Components Analysis (PCA) [11]. This

equates to performing singular value decomposition of the matrix A into UΣV
T .

Here, U is an M × M orthogonal matrix (i.e. its columns form an orthonormal

basis), which can be viewed as a linear map from the target basis into the original.

Hence U
T is a linear map into the target basis:

A
′ = U

T
A = U

T
UΣV

T = ΣV
T

Hence A
′ is an M × N matrix whose columns represent the same expressions as in

A, but in the new basis U.

For each basis vector ui in U, we associate two sets of rationals, sU
i and sL

i called

the upper and lower closed splittings of ui. These splittings define a finite set of

intervals, which will form the abstract data environment of the expression that ui

denotes. For example, if this expression is x− y, and the sets sU
i and sL

i are {0, 10}
and {10, 11} respectively, then the abstract environment records only whether the

value of x − y lies in the interval (−∞, 0], (0, 10), [10, 10], (10, 11) or [11,∞).

More formally, an open interval (x, x) over the rationals denotes the set {q ∈
Q | x < q < x}, where x ∈ Q ∪ {−∞,∞}. Similarly, a closed interval [x, x] denotes

{q ∈ Q | x ≤ q ≤ x}, for x ∈ Q, and the definitions of [x, x) and (x, x] are as

expected. An interval space is a set I of intervals, such that
⋃

i ∈ I = Q and

∀i1, i2 ∈ I.i1 6= i2 ⇒ i1 ∩ i2 = ∅. To construct such an interval space, sU
i and sL

i

define all the closed interval ends (for the upper and lower bounds on the interval

respectively), causing the open ends to follow uniquely.

To determine the splittings for each basis, we consider the expressions in e ∈ A
′.

For all e of the form a′ui, then for all conditions e < c, we examine the normalised

condition e
a′ <

′ c
a′ . If <

′ ∈ {<,≥}, we add c
a′ to sL

i , and if <
′ ∈ {>,≤}, we add

c
a′ to sU

i . Otherwise, for <
′ = ‘=’, we add c

a′ to both sL
i and sU

i . These splittings

define the top-level abstract data environment. All remaining conditions are on

expressions of the form
∑

i a
′
ui. These define the remainder of the abstract data

environment.

A state E in the abstract data environment completely determines the truth of

all conditions in the function. We write E = ET ∧ ES , where ET is the top-level

environment, defining a box in the vector space that U determines. ES can be

seen as a conjunction of the remaining predicates and their negations; namely a

set of linear constraints that must hold within ET . We denote the abstract data

environment space of a function f by E(f).

5.4 PEPA Model Construction

We can now bring together the control-flow and data abstractions to build a PEPA

model. In this model, each state identifies a (path, environment) pair. The rates

depend on both the expected duration of a path (which is determined by basic

10

Smith

block profiling), and the probability of moving from one environment to another.

We describe this process more precisely as follows.

Recall that S(f) is the set of all control-flow states, and E(f) the set of all data

environments, for the function f . Now, for S = 〈L,C, P,U〉 ∈ S(f) we will denote

the projection operations by SL . . . SU respectively. The states of the PEPA model

are denoted State i,j, where i and j range over the control-flow and data states

respectively, and are indices into the sets S(f) and E(f) respectively (under some

ordering). For conciseness, we will herein refer to just S and E , in relation to the

function f .

In constructing the model, we need to determine a rate for each state transition.

This is partly determined by the probability of moving from one state to another

(which we will show below how to calculate), but also dynamically by the average

time taken to execute the instructions corresponding to that state. We can measure

this execution time empirically using basic block profiling – namely, we profile the

sequential instructions by running them multiple times, and averaging the duration

with respect to a control. For a state S, we will denote the inverse of this duration

(i.e. its rate) by SR

In general, the probabilities we must calculate are of the form Pr(P | E), where

P is a boolean expression containing linear conditions, and E is an environment.

We can simplify matters by splitting the environments E into their two components,

ET and ES , allowing us to compute the following:

Pr(P | ET ∧ ES) =
Pr(P ∧ ES | ET)

Pr(ES | ET)

The top-level environment, ET , defines a rectilinear volume in n-dimensional space

(where n is the number of basis vectors). Hence we are computing the probability

of a set of linear conditions holding in this volume. To compute these probabilities

generally, we apply a dart-throwing Monte Carlo method. The basic approach here

is to take a sample of points from the environment defined by ES , and evaluate

the compound condition (left hand side of the conditional probability) for each of

them. The proportion of points for which the condition evaluates to true gives an

estimate of the probability of the condition being true over the population.

We define a function reach(S) as the reachable control-flow states from S:

reach(〈L, goto{L1, . . . , Ln}, P, U〉) = {S|SL ∈ {L1 . . . Ln}}

reach(〈L, call(X, g, L)(E1 , . . . , En), P, U〉) = {S|SL = L}

reach(〈L, return E,P,U〉) = {S|SL = 0}

When we define the PEPA processes for the states State i,j, we have three dif-

ferent cases to consider. For S = Si, we look at the type of command, SC . For a

goto instruction, the state change is entirely internal, and so the action will be of

type τ . For call and return instructions, however, we are interacting with another

function, and so need a public interface of actions. When the function gets called,

it must enter an initial control-flow state. Since it relies on the arguments it was

called with to determine this, we must encode the control-flow state into a set of

call actions. Similarly, the return value is passed by a set of return actions. The

11

Smith

Fig. 3. The structure of a function interface

function begins and ends in a special state Init, where it passively waits to be called.

This is shown diagramatically in Figure 3, where the black state is Init. Since it is

the caller that must determine what environment to instatiate the function with,

it needs to know what information the function requires. The interface I(f) of a

function f is a set of pairs, (α,P), where α is an action and P is the predicate

held by the action. In other words, if a function is called using α, P is the initial

environment that will hold. Hence we define:

I(f) = {(call f,i, P)|SL = 0 ∧ SP = P ∧ S = S(f)i}

When we return from a function, it is the caller that needs to specify the abstract en-

vironment of the return value. We represent this calling context as a triple (R, l,X)

of an interval space R, an index l into that space, and a variable X to update.

R = Ri is the environment from which the function was called, and the callee eval-

uates the probability of moving to other states in R when it returns. Note that

only certain components of the environment space will be modified by the function

call; namely those relating the return value to other environment variables. Hence

we can optimise the implementation by only considering certain states.

In general, it follows that calculating the return value of a function depends on

both the state of the function and that of the caller. In other words, we need to

represent the calling environment in some way to generate a model of the function.

There are two ways of doing this:

(i) Generate a seperate model of the function for each calling context. This cor-

responds to embedding the model of the function into that of the caller.

(ii) Use functional rates [10]. Here we only have one model of the function, in

parallel with that of the caller, and the rates are expressed as a function of

the state of the caller. To model this, we introduce an additional component,

recording the calling context, which can be passively set by the caller, and

queried by the function. We can think of this component as an oracle, allowing

the correct probabilities of environment change to be represented in the model.

To simply the presentation that follows, we will make no assumption about which

approach is taken; only that the calling context is available to the function.

We will now define the PEPA model of f . Firstly, the initial state of the function

12

Smith

is defined as:

Init
def
=

∑

S′∈S|S′
L
=0

∑

E′⇒S′
P
∈E

(call f,i,Pr((E′ | S′
P).⊤).State i′,j′

where S′ = Si′ and E′ = Ej′. Note that the probability is not of the form Pr(P | E),

but we can calculate it in exactly the same way by splitting the predicate into an

orthogonal component PT , and the remaining conditions PS , as we did for environ-

ments in Section 5.3.

For all S = Si such that SC is a goto instruction:

State i,j
def
=

∑

S′∈reach(S)

∑

E′⇒S′
P
∈E

(τ,Pr((E′{SU (x)/x} | E).SR).State i′,j′

where S = Si, E = Ej, S′ = Si′ and E′ = Ej′ .

The states where SC is a ‘call(X, g, L)(E1 , . . . , En)’ instruction are defined as:

State i,j
def
=
∑

E′⇒S′
P
∈E (τ,Pr((E′{SU (x)/x} | E).SR).CallState i,j′

CallState i,j
def
=
∑

(α,P)∈I(g) (α,Pr(P{E1/arg1 . . . En/argn} | E′).r).ReturnState i,j

ReturnState i,j
def
=
∑|E|

k=0 (returnk,⊤).State i′,k such that S′ ∈ reach(S) ∧ Ek ⇒ S′
P

where S = Si, E = Ej , E′ = Ej′ , and r is the rate of calling the function (determined

empirically). Intuitively, CallState corresponds to invoking the function, after which

we enter ReturnState where we wait for it to return.

Finally, when SC is a ‘return ER’ instruction, under the calling context (R, l,X)

we define:

State i,j
def
=

|R|
∑

k=0

(returnk,Pr(Rk{ER/X} | Rl ∧ E{SU (x)/x}).SR).Init

where S = Si and E = Ej .

Finally, having derived a model for each function in the system, we can compose

them as described in Section 4.

6 Stenning’s Protocol – An Example

To illustrate the approach we have described, let us examine a simple protocol.

Stenning’s protocol [12] provides reliable end-to-end delivery of packets in the sim-

plest possible way. A source and a sink each locally maintain a sequence number for

the connection. When the source sends a packet, it attaches its current sequence

number to it. When the sink receives the packet, it checks whether the sequence

number matches what it was expecting, and if so increments its sequence number

and sends an acknowledgement to the source. The source will send the next packet if

it receives a correct acknowledgement; otherwise, after a timeout, it will retransmit

the last packet.

13

Smith

Fig. 4. Utilisation and throughput of Stenning’s protocol, as the timeout varies

Ignoring the payload of the protocol, the abstract receive function for the source

is as follows, where pseq is the packet sequence number, and sseq is that of the

source:

source recv(pseq) :=

if (pseq == sseq) then (sseq := sseq + 1) else skip;

:= source send(sseq);

return 1;

Here, the control flow states are as follows:















〈0, call(, source send, 1)(sseq), pseq = sseq, {sseq 7→ sseq+ 1}〉 ,

〈0, call(, source send, 2)(sseq), pseq 6= sseq, {}〉 ,

〈1, return 1, ⊤, {}〉 , 〈2, return 1, ⊤, {}〉















There is only one expression occuring in the above predicates, namely sseq−pseq.

This has the interval space I = {(−∞, 0), [0, 0], (0,∞)}, since the only comparison

on this expression is to the constant zero. In this example, the data environment

is trivial (in that there are no non-orthogonal components), and so we can proceed

directly to construct the model. We will assume a calling context (R, l,X). Naming

the control-flow states A to D, and for empirically-derived rates rcall , r1 and r2 we

reach:

Init
def
= (callsource recv,1,⊤).StateA + (callsource recv,2,⊤).StateB

StateA
def
= (τ, r1).CallStateA

CallStateA
def
=

P

(α,P)∈I(source send)(α, Pr(P{sseq/arg1} | sseq − pseq ∈ (0,∞)).rcall).ReturnStateA

ReturnStateA
def
=

P

i(returnsource send,i,⊤).StateC

StateB
def
= (τ, r1).CallStateB

CallStateB
def
=

P

(α,P)∈I(source send)(α, Pr(P{sseq/arg1} | sseq − pseq ∈ [0, 0]).rcall).ReturnStateB

ReturnStateB
def
=

P

i(returnsource send,i,⊤).StateD

StateC
def
=

P|R|
k=0(returnsource recv,k,Pr(Rk{1/X} | Rl ∧ sseq − pseq ∈ (0,∞)).r2).Init

StateD
def
=

P|R|
k=0(returnsource recv,k,Pr(Rk{1/X} | Rl ∧ sseq − pseq ∈ [0, 0]).r2).Init

Note that the probability calculations in CallStateA and CallStateB are functional

rates, since they depend upon the state of the sink. Due to space considerations,

we cannot describe this process in detail, but it is essentially the same as that used

for transmitting the return value of a function call.

Constructing a similar model for the sink, and composing these together with a

14

Smith

network and timer as described in Section 4, we can build a complete model of the

system. Some results from the analysis are shown in Figure 4. The second graph

shows how the timeout rate affects the throughput; if we timeout too slowly, we

have to wait a long time after a packet was lost to get the retransmission, but if

we timeout too quickly, we send too many unnecessary retransmissions, therefore

wasting bandwidth.

7 Conclusions

In this paper, we presented an abstract interpretation from source code to a perfor-

mance model. There is still much work to be done in formalising this with respect

to the errors involved, and it seems that a proper formulation in the context of

abstract interpretation [5] would be appropriate. Furthermore, there is a great deal

of scope to apply existing simplification techniques [4,6,14] to reduce the size of the

Markov models we generate.

The ultimate aim of this work is to produce a tool for semi-automatic derivation

of performance models from real code. We did not mention any implementation

details in this paper, but at the time of writing, we are completing a prototype

implementation of the abstractions described, in the context of network simulator

ns-2 [13] agents. This will allow us to validate the models we generate against

simulation results, and is the first step towards a tool that can deal with ‘native’

protocols written in C.

Whilst this work is still in its early stages, the abstraction techniques we have

considered seem to be feasible, and future work looks to be promising. This is

certainly a tool that is needed, and would be widely appreciated by both the software

engineering and performance evaluation communities. Although there are many

challenges yet to be faced, we have taken the first few steps, and look forward to

continuing along this path.

References

[1] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek, S. K. Rajamani,
and A. Ustuner. Thorough static analysis of device drivers. In EuroSys’06: European Systems
Conference, 2006.

[2] T. Ball and S. K. Rajamani. The SLAM toolkit. In Conference on Computer Aided Verification, 2001.

[3] C. Canevet, S. Gilmore, J. Hillston, M. Prowse, and P. Stevens. Performance modelling with UML
and stochastic process algebras. IEE Proceedings: Computers and Digital Techniques, 150(2):107–120,
March 2003.

[4] W. Cao and W. J. Stewart. Iterative aggregation/disaggregation techniques for nearly uncoupled
Markov chains. Journal of the ACM, 32(3):702–719, July 1985.

[5] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In POPL, pages 238–252, 1977.

[6] T. Dayar and W. J. Stewart. Quasi lumpability, lower-bounding coupling matrices, and nearly
completely decomposable markov chains. SIAM J. Matrix Anal. Appl., 18(2):482–498, 1997.

[7] V. Firus, S. Becker, and J. Happe. Parametric performance contracts for QML-specified software
components. In Proceedings of Formal Foundations of Embedded Software and Component-Based
Software Architectures, Electronic Notes in Theoretical Computer Science. ETAPS 2005, 2005.

[8] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with Blast. In
Proceedings of the Tenth International Workshop on Model Checking of Software (SPIN), Lecture
Notes in Computer Science 2648, pages 235–239. Springer-Verlag, 2003.

15

Smith

[9] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University Press, 1996.

[10] J. Hillston and L. Kloul. Formal techniques for performance analysis: Blending SAN and PEPA. Formal
Aspects of Computing, 2006.

[11] I. T. Jolliffe. Principle Component Analysis. Springer Series in Statistics. Springer, 2002.

[12] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1996.

[13] S. McCanne and S. Floyd. The Network Simulator, ns-2. http://www.isi.edu/nsnam/ns.

[14] V. Mertsiotakis. Approximate Analysis Methods for Stochastic Process Algebras. PhD thesis, Institut
für Mathematische Maschinen und Datenverarbeitung, 1998.

[15] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language and tools for
analysis and transformation of C programs. In Proceedings of Conference on Compiler Construction,
pages 213–228, 2002.

[16] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-safe retrofitting of legacy code. In Proceedings
of the Principles of Programming Languages, 2002.

[17] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redundant computations.
In Proceedings of 15th ACM Symposium on Principles of Programming Languages, pages 12–27. ACM
Press, 1988.

16

	Introduction
	Communication Protocols and Source Code
	The PEPA Language
	Structural Modelling
	Functional Modelling
	Abstract Syntax and SSA
	Control-Flow State Derivation
	Data Environments
	PEPA Model Construction

	Stenning's Protocol -- An Example
	Conclusions
	References

