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Abstract

Distributed computer systems are becoming increasingly prevalent, thanks to modern

technology, and this leads to significant challenges for the software developers of these

systems. In particular, in order to provide a certain service level agreement with users,

the performance characteristics of the system are critical. However, developers today

typically consider performance only in the later stages of development, when it may be

too late to make major changes to the design. In this thesis, we propose a performance-

driven approach to development — based around tool support that allows developers

to use performance modelling techniques, while still working at the level of program

code.

There are two central themes to the thesis. The first is to automatically relate per-

formance models to program code. We define the Simple Imperative Remote Invoca-

tion Language (S), and provide a probabilistic semantics that interprets a program

as a Markov chain. To make such an interpretation both computable and efficient,

we develop an abstract interpretation of the semantics, from which we can derive a

Performance Evaluation Process Algebra (PEPA) model of the system. This is based

around abstracting the domain of variables to truncated multivariate normal measures.

The second theme of the thesis is to analyse large performance models by means

of compositional abstraction. We use two abstraction techniques based on aggrega-

tion of states — abstract Markov chains, and stochastic bounds — and apply both of

them compositionally to PEPA models. This allows us to model check properties in

the three-valued Continuous Stochastic Logic (CSL), on abstracted models. We have

implemented an extension to the Eclipse plug-in for PEPA, which provides a graphical

interface for specifying which states in the model to aggregate, and for performing the

model checking.
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Chapter 1

Introduction

There is a real need, in the software development industry, for an engineered approach

to building distributed systems with performance in mind. Although methodologies

such as software performance engineering [164] are used in some particular application

areas, they are not employed broadly across the industry. This is a real problem, since

an increasingly large proportion of development projects are now distributed in nature.

The only long term solution is to make performance modelling and analysis techniques

more accessible to developers.

Until now, the application areas that have made the most use of performance anal-

ysis have predominantly offered performance critical services to other applications.

For example, there has been a great deal of work concerning the performance of

databases [136], storage networks [162], and low-level communication protocols such

as TCP [172]. The problem comes when we look at higher-level distributed systems,

such as web services and web applications, where we have system-specific perfor-

mance requirements, but lack the resources — in terms of time, money and expertise —

to undertake extensive performance analysis.

To address this problem, we need to consider how performance engineering can be

made integral to the software development process, without requiring specialist exper-

tise on the part of the developer. To this end, we propose in this thesis a framework

for performance-driven development, as a supplement to existing software engineering

methodologies. The aim is to provide integrated tool support that allows developers to

obtain performance predictions for a software implementation — throughout the entire

development process. These predictions can then be used to indicate whether or not

the implementation must be altered in order to meet its performance requirements.

Before we proceed any further, let us take a step back and clarify exactly what we

1



2 Chapter 1. Introduction

mean by ‘performance prediction.’ To the cautious reader, the idea of automatically

predicting the performance of an implementation will immediately ring alarm bells —

not least, because it seems to imply the ability to predict whether or not a program will

terminate, which is undecidable. Needless to say, this is not what we mean. There are

two important points to bear in mind when considering a performance prediction:

1. A performance prediction must be based on a number of assumptions, some of

which are inherent in the modelling formalism used, and some of which need

to be specified by the developer. It is not possible to say anything about the

performance of a piece of code in isolation — factors such as the hardware used,

the network conditions and topology, and the behaviour of the users will all

have an impact on performance. The developer must make some assumptions

about the context in order to obtain a performance prediction, and a performance

prediction must only be considered within this context.

2. A performance prediction must be based on a safe abstraction. As we shall see

momentarily, there are several stages of performance-driven development where

abstraction is necessary to perform any sort of analysis at all. For example, even

a small implementation can quickly become too large to analyse directly if we

consider every possible value that an integer variable can take. Instead we need

to perform our analysis at a more abstract level, but at the same time ensure

that it is safe with respect to the performance predictions that it yields. More

precisely, we must ensure that any prediction we give is correct — with respect

to the assumptions made — at the expense of sometimes being unable to give an

answer.

Starting with the source code of a distributed system, there are a number of possi-

ble ways to obtain performance predictions. The most obvious is to actually execute

the code — either directly, or via a simulation — but this is of little use during the

development process, when the code is only partially written. A more sophisticated

approach is to use performance modelling, where we build and analyse a mathematical

model of the system. The difficulty with this approach is that it requires significant

skill and understanding of the system in order to build the model. Our proposal is to

open up these techniques to developers by finding ways of automatically extracting

performance models from code. This is one of the key challenges of performance-

driven development — to relate performance models to program code, with partially

written code corresponding to more abstract models.
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The purpose of this thesis is to present this notion of performance-driven devel-

opment, and to show that the approach is viable in theory. In doing so, we will build

and expand upon existing techniques for program analysis and performance evaluation,

thus developing a theoretical basis on which performance-driven development can take

place. In order to make realistic progress in these areas, however, we have restricted

our focus to one development language and one modelling language:

• The Simple Imperative Remote Invocation Language (S) — which we intro-

duce in Chapter 3 — is a syntactically simple language, which captures the main

features present in imperatively programmed distributed systems. We will use

this as our development language, and the starting point of our analysis.

• The Performance Evaluation Process Algebra (PEPA) [91] is a widely-used lan-

guage for compositional performance modelling, and is supported by a range of

analysis tools. It is based semantically on continuous time Markov chains [108],

which have a rich and well-studied mathematical theory that we can utilise. We

will introduce PEPA in Section 2.5.2.

In the remainder of this chapter, we will describe the general setting of the the-

sis, and give an outline of our theoretical and practical contributions. We begin in

Section 1.1 with a general description of performance-driven development, before dis-

cussing each stage of the process in more detail in Sections 1.2, 1.3 and 1.4. We will

then conclude this chapter with an outline of the thesis, as well as identifying the main

contributions that we have made, in Section 1.5.

1.1 Performance-Driven Development

To allow developers to reason about performance properties throughout the develop-

ment cycle, we propose a new methodology called Performance-Driven Development.

This is an iterative software development process, where we periodically generate a

performance model from source code, analyse it, then use the results of the analysis

to guide further development. The process, illustrated in Figure 1.1, consists of the

following four stages:

1. Abstraction — producing a performance model from program code. This re-

quires some information from the developer concerning their assumptions about

the context in which the program will execute, and the parts of the program to
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Figure 1.1: Overview of performance-driven development

explicitly model — for example, we will not usually want to model operating

system calls. If we do not model part of the code, or if the code is incomplete —

as is often the case early in development — we may need additional information

from the developer about the expected functional behaviour and performance

characteristics of the omitted code.

2. Specialisation — reducing the performance model so that it relates to a particular

property of concern, and is small enough to analyse. This is a vital stage if we

are to analyse systems of any realistic size. After abstracting the program code

to a performance model, we will often find that it is too large to analyse, and so

further abstraction is essential. If we are interested in a particular performance

property, we can do this in such a way that the least important parts of the model

(for that particular property) are abstracted the most.

3. Analysis — obtaining performance properties from the model. The analysis tech-

niques depend on the particular modelling formalism used, but there are many

existing tools available. For example, tool support for PEPA includes the PEPA

plug-in for Eclipse [178], Möbius [48] and PRISM [114]. These support the

numerical solution, model checking and simulation of PEPA models.

4. Refinement — using the results of the analysis to modify the implementation. It

is the responsibility of the developer to modify their program code, but we still

need to present the results of the analysis in a way that they can understand.
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We will discuss the abstraction stage in more detail in Section 1.2, the specialisation

stage in Section 1.3, and the analysis and refinement stages in Section 1.4.

In addition to these four stages, Figure 1.1 shows a structural view of performance-

driven development, as a mapping between different languages. One interesting fea-

ture is that we identify an intermediate language between the source programming

language and the performance modelling language. Since there is a large gap between

the complexity of a real programming language, such as Java or C++, and that of an

abstract performance model, separating the abstraction into two distinct stages helps

to make it more manageable. An example of an intermediate language is S, which

we mentioned in the introduction and will introduce in Chapter 3.

For the purposes of this thesis, we will only consider a fragment of the

performance-driven development process, starting from this intermediate lan-

guage S. That is to say, we will assume that any program we are interested in

has already been translated into S, which allows us to focus on developing a formal

and sound abstraction into a performance model, without having to deal with specific

language features. Since our goal is to show that performance-driven development is

a viable approach, it is important that we first lay down the theoretical foundations to

support it. There remain, of course, a great many challenges in making it practical, but

that is the topic of future work.

We will now examine each stage of performance-driven development in more de-

tail, and in relation to the contributions of this thesis. In particular, this means that we

will specifically talk about extracting PEPA models from S programs.

1.2 Abstraction: From Code to Model

The first stage of performance-driven development is to generate a performance model

from program code. This is not straightforward, and we devote the entirety of Chapter 4

to one approach. First, however, let us consider this in a broader setting, by looking at

the structure of the distributed systems we are interested in analysing.

We can think of a distributed program as consisting of a number of functional

units, which each provide an external interface. If these functional units are placed in

physically separate locations, then the only way for them to interact with one another

is over a network. A user of the system — which may itself be another system — can

interact either remotely, via the network, or locally, by directly invoking a function of

the provided interface. In both cases, we can model each user as a separate parallel
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Figure 1.2: Structure of a distributed system

thread, with the characteristics of the user determined by the rate of interaction and

the type of interaction (e.g. blocking or non-blocking). We can assume without loss of

generality that all communication is via a network interface, since two threads on the

same machine can communicate using the loopback interface. The different latencies

can be captured by the timing parameters of the model.

The general layout of such a distributed system is shown in Figure 1.2. We can vi-

sualise a direct mapping between this structural view of the system and a PEPA model

of its performance — the functional units, the network, and the users each correspond

to sequential components in the model, and the way in which they interact is captured

by the system equation. We will define these terms formally in the next chapter, and

it will be useful to think back to this image when we do. Note that the network does

not have to be a single component, and we could, for example, model a more complex

network topology using multiple components that correspond to individual routers.

There are two aspects to generating a PEPA model from program code. The first is

to abstract the functional units, which we do by analysing their code. The second is to

specify the context — namely, the network and the users — which can either be done

directly in PEPA, or by writing an additional functional unit in the source language,

that can be abstracted to a PEPA component. In both cases, there is no need for the

developer to be exposed to the modelling language — even if we describe the context

directly in PEPA, we can provide a library of common network and user behaviours

that can simply be ‘plugged’ into the model.

The greater challenge we face is abstracting the code of each functional unit to

a PEPA component. We need to abstract both the possible data environments of the

program — the values that its variables can take — and its control flow. In other
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words, we want to avoid having a state in the model for every possible valuation of a

program’s variables, and we want to avoid unrolling loops indefinitely. The problem

arises because control flow decisions depend on the values of a program’s variables, so

we cannot abstract away too much information.

Our solution to this problem, which we present in Chapters 3 and 4, is to define

a probabilistic semantics of our source language S, and build an abstract interpre-

tation [50] on top of it. The main idea is to represent the state of the program as a

probability measure, which evolves as the program executes. The result is that con-

trol flow decisions in the abstract model become probabilistic, since the abstract states

represent a distribution over the values of the program’s variables, rather than just one

particular valuation. The focus of our analysis is to be able to calculate the probabili-

ties of these control flow decisions, for distributed programs that interact using remote

procedure calls. We will only consider loop-free programs, although we will discuss

some of the challenges presented by loops in our conclusions.

This approach results in a probabilistic model of the program, but to reason about

performance and construct a PEPA model we also need timing information. Fortu-

nately, our abstraction ensures that every state in the abstract model corresponds to a

basic block in the program — a portion of sequential code that does not contain any

loops. We can therefore use profiling to measure the expected execution time of each

block — if a block takes on average T time units to execute, we can say that it executes

at a rate of 1
T

. By combining such timing information with the probabilistic model that

we generate from the program, we can construct a PEPA model.

1.3 Specialisation of Performance Models

Once we have derived a PEPA model from a program, the next stage is to analyse it.

The problem is that, in general, the model may be too large for the existing tools to

analyse directly. We therefore need to look at ways of reducing the size of the model,

which is the subject of Chapters 5 and 6.

Since PEPA is a compositional formalism, it allows extremely large Markov chains

to be specified in a compact form. When we come to analyse a model, however, we

need to actually generate the underlying Markov chain, which means that we lose this

compact representation. There are many known techniques for reducing the size of

Markov chains, which we will give an overview of in Section 2.5.3. However, since

these techniques work at the level of the Markov chain, we run into problems when we



8 Chapter 1. Introduction

have a PEPA model that describes a Markov chain that is simply too large to generate.

Our solution to this problem is based on two key ideas — we construct a bounding

abstraction, and we construct it compositionally. The idea of a bounding abstraction is

that properties of the Markov chain, which could be transient or steady state properties,

are safely approximated by an interval of probabilities. For example, if the abstraction

tells us that the steady state probability of being in a certain state is between 0.4 and 0.6,

we will be sure that this is correct of the original model. Whilst a bounding abstraction

is always safe in this respect, different abstractions can have different precisions —

the challenge being to do better than the worst case answer that the probability lies

between zero and one.

Our approach is to take two existing bounding abstraction techniques, and apply

them compositionally to PEPA. We use abstract Markov chains [105] to bound tran-

sient properties of the model, and combine this with stochastic bounds [69] to bound

steady state properties. The idea is to bound each sequential component in the model

separately. This results in an abstract PEPA model, which induces a Markov chain that

is a bounding abstraction of that induced by the original model. We will describe this

in detail in Chapter 6.

The main challenge with this technique is in choosing an abstraction that gives the

most precise bounds for a property of interest. Doing this automatically is a difficult

and open problem, and one that we do not attempt to tackle in this thesis. We have

instead implemented a graphical interface for specifying which states of a component

to abstract, along with a model checker for the Continuous Stochastic Logic (CSL) [13,

16], as part of the PEPA plug-in for Eclipse [178]. We will describe this in Chapter 7.

1.4 Analysis and Refinement: From Model to Code

After obtaining a PEPA model that is small enough to analyse, we can use tools such

as the PEPA plug-in for Eclipse to analyse the model. This allows us to obtain per-

formance measures, such as the proportion of time spent in a particular state, or the

throughput of a certain activity. The key difficulty is to present the results in a way that

a developer can easily understand. This means that properties must be specified not in

terms of the performance model, but in terms of the program code.

Some aspects of this translation are straightforward to do. For example, it is es-

sential to keep a record of which statements of code each state in the performance

model corresponds to, and which function call each named activity corresponds to.
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The most difficult problem, however, is to find a more user-friendly language for spec-

ifying the performance properties, rather than having to use logics like CSL. Whilst

this is an important practical issue, and there has been some recent work on address-

ing it [83, 175], it is beyond the scope of this thesis. We have, however, implemented

a more user-friendly interface for constructing CSL formulae, which we will demon-

strate in Chapter 7.

The aim of performance-driven development is to provide developers with per-

formance information throughout the software development process. If the predicted

performance does not meet the performance requirements, then the developer has the

opportunity to modify the design at a much earlier stage than if they had waited until

conventional performance testing. Whilst it is not possible in general to automatically

re-factor an implementation so that it meets its requirements, performance analysis can

help to identify a system’s bottleneck components, and the reason for its failure.

It is vital, however, that these performance predictions are interpreted in the con-

text of the assumptions made. If the developer assumes a more favourable network

environment than in reality, they might incorrectly conclude that the system will meet

its performance requirements. There are also a number of implicit assumptions in the

modelling formalisms used, such as the use of exponential distributions in Markov

chains. If we are to hide the details of performance modelling from developers, we

need to be careful to make these assumptions known, so that they do not lead to false

conclusions. Despite this note of caution, however, the benefits of bringing perfor-

mance analysis techniques to developers are immense, as we hope will become appar-

ent throughout this thesis.

1.5 Structure of the Thesis

An outline of the structure of the thesis is given in Figure 1.3, which shows how the

chapters depend on one another. In Chapter 2, we describe the background to modern

software development practices, and performance modelling techniques. We introduce

PEPA, and discuss techniques for tackling the state space explosion problem in the

context of Markovian performance models. We then move to the two main contri-

butions of this thesis — Chapters 3 and 4 deal with abstracting programs to obtain

performance models, and Chapters 5, 6, and 7 with specialising performance models

so that they can be analysed. Each set of chapters can be read separately, but contribute

equally significant roles in the development of performance-driven development as a
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Figure 1.3: Outline of the thesis, and dependencies between chapters

viable approach.

In Chapter 3, we introduce the language S, and present a probabilistic seman-

tics of S programs. We then construct an abstract interpretation of this semantics

in Chapter 4, using truncated multivariate normal measures as the domain of the pro-

gram’s variables. We describe the abstract interpretation compositionally, and illustrate

the approach by means of a running example.

Turning to the abstraction of PEPA models, we first describe the background to

abstracting Markov chains in Chapter 5 — in particular, the techniques of abstract

Markov chains and stochastic bounds. Building upon this work, we develop compo-

sitional abstractions for PEPA in Chapter 6, based on a Kronecker representation of

PEPA models. We use abstract Markov chains to analyse transient properties, and

stochastic bounds for steady state properties.

Bringing together the results in Chapter 6, we describe the tool support that we have

developed in Chapter 7. We have implemented an extension to the PEPA plug-in for

Eclipse, providing an abstraction engine for aggregating states in a PEPA model, and

a CSL model checker for abstract PEPA models. Both are accessed using a graphical

interface.

Finally, we conclude the thesis in Chapter 8 by examining our contributions and

discussing some of the opportunities and challenges for extending this work further. In
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particular, we will discuss how we might deal with looping behaviour and more general

models of communication in programming languages, in the context of constructing

performance models. We will also examine ways in which we might further improve

on techniques for abstracting compositional performance models. Ultimately, a great

deal of future work is needed to bring performance-driven development close to being

realised, but we hope that this thesis will provide the foundation for this to happen.

The main contributions of this thesis can be summarised as follows:

1. The idea of performance-driven development as a complementary approach to

software development, based on tool support for deriving and analysing perfor-

mance models from program code [Chapters 1 and 2].

2. A semantics of the Simple Imperative Remote Invocation Language (S) based

on probabilistic automata (in this context, automata whose transitions are la-

belled with operators on measures) [Chapter 3].

3. An abstract interpretation of S programs, based on truncated multivariate

normal measures, and a collecting semantics with which a PEPA model can be

generated [Chapter 4].

4. A compositional abstraction of PEPA models, based on abstract Markov chains,

for analysing transient properties of CSL/X1 [Chapter 6].

5. A compositional abstraction of PEPA models, based on stochastic bounds, for

analysing steady-state properties of CSL, and an algorithm for constructing these

bounds over a partially-ordered state space [Chapter 6].

6. The development of tool support in the Eclipse platform for abstracting and

model checking PEPA models, using the above techniques [Chapter 7].

Some of the work in this thesis has been previously presented. An earlier version of the

work in Chapters 3 and 4 was published in [170], where the emphasis was on analysing

looping behaviour rather than concurrency. The idea of extracting performance models

from program code was first introduced in [169]. All other work, unless otherwise

attributed, is original and unpublished.

1We do not include the timed next operator, for reasons we will discuss in Chapter 5.





Chapter 2

Software Engineering and

Performance

We live, today, in a world where computing has become so integrated into our daily

lives that we often fail to notice its presence. With the increasing pervasiveness and

mobility of technology, the need for and the challenge of building robust distributed

software systems is only set to increase. In addition to being free of errors, these sys-

tems must be able to handle the simultaneous demands of large numbers of users. The

only hope to meet these requirements is through a systematic and disciplined approach

to software engineering.

In comparison to other engineering disciplines, software engineering is still very

much in its infancy. This is largely due to the fluid nature of software, which requires

a fundamentally different approach to its development. Since software is an intellec-

tual — rather than a physical — entity, it has the illusion of being financially cheap to

modify. Issuing a patch for a piece of software is essentially free, compared with the

cost of recalling a faulty car engine, or mobile phone. However, this frame of mind

can easily lead to bloated systems that are too complex to understand, and therefore

contain bugs that are impossible to fix.

As early as the 1970s, it was understood that a disciplined approach was needed

to software development [60], and that completely sequential processes such as the

waterfall model [151] were highly risky. This sort of approach requires the design to

be fixed before starting the implementation, which among other things fails to account

for any problems that might be discovered during coding. Even more worryingly, it

assumes that testing only takes place after the implementation is complete, by which

time it may be impossible to untangle and fix all the bugs. An analogy would be if one

13
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were to build a house, but only verify its structural integrity after construction work

has been completed — even if the design is excellent, we need to adapt to unforseen

circumstances, and detect mistakes as early as possible so that they can be remedied.

These early models of software engineering soon evolved into more realistic ap-

proaches, such as the spiral model [30]. This treats software development as an iter-

ative process, involving several stages of risk assessment, planning, design and proto-

typing. In particular, by building testing into each cycle, we can identify and correct

bugs at an earlier stage of development. More recently, the iterative approach has been

taken to a further extreme with practices such as Extreme Programming (XP) [25].

This advocates having very short iteration cycles, as well as elevating the status of

testing so that it drives the development process, rather than being driven by it.

This approach to testing, known as test-driven development [26], has had a major

impact on the way in which software is developed. For example, tool support for unit

testing is now widely available, which allows us to test individual components of a

system in isolation. Unfortunately, testing at this level is usually concerned with only

functional requirements; namely, that some method returns the correct value for a given

input. Non-functional requirements, such as performance, often depend on the whole

system and so are only tested at the system or integration level, which is usually fairly

late in the development process. This essentially means that as far as performance

testing is concerned, many industrial projects have not progressed much further than

the waterfall model.

There are many techniques available for performance evaluation of software, but

most development projects focus just on measuring the performance of a system in the

late stages of testing. This involves subjecting the system to artificial workloads, which

are designed to test its performance under both normal operating conditions and more

extreme conditions. If it fails to meet its requirements, it may be possible to improve

the performance by optimising and tuning bottleneck components and algorithms. But

sometimes the problem is more serious. If the fault lies in the design of the system, it

can be prohibitively expensive to fix in the late stages of development.

To try to mitigate these problems, there has been a large amount of research con-

cerned with modelling performance. Even in the early stages of design, when there is

no working system from which to measure performance, a performance model can be

built to approximate its behaviour. Whether this be a mathematical model or a com-

puter simulation, it allows performance problems to be identified at an earlier stage in

development. This methodology, known generally as software performance engineer-
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ing [164], provides a formal framework for including performance requirements in the

design phase. Some application areas, such as low level communication protocols,

processor scheduling algorithms, and traffic management protocols, have made use of

performance modelling to great success [115]. However, the majority of commercial

development projects still fail to make use of these techniques.

There are many reasons for not including performance modelling as part of a de-

velopment project. Building and analysing mathematical models requires specialist

knowledge and experience, and simulations are time consuming and costly to develop.

The application domains that do use performance modelling often provide a low-level

service with performance-critical algorithms. However, even for higher level applica-

tions, the way in which functionality is distributed over the network — a fundamental

part of the design — is crucial to achieving good performance.

If developers are to use performance modelling in general, they require tools that

are easy to use and that automate as much of the modelling process as possible. The

topic of this thesis is to present one approach that might help this to become a reality —

namely, the automatic extraction of performance models from source code. In this

thesis, we put forward the idea of a new approach to performance-driven software

development, but first we will examine the current state of affairs in more detail.

In this chapter we will provide a survey of the existing work on performance anal-

ysis of software, from both a software engineering and a performance modelling per-

spective. We begin in Section 2.1 with the main approaches to modern software devel-

opment, along with techniques for testing and verification in Section 2.2. Following

this, we discuss how performance fits into the development process in Section 2.3, be-

fore looking at methods for measuring and modelling the performance characteristics

of a system in Sections 2.4 and 2.5 respectively. Finally, in Section 2.6, we describe

existing work on extracting performance models from software specifications, before

considering the main idea of this thesis — extracting performance models from source

code — in Section 2.7.

2.1 Modern Software Development

There is no single approach to software engineering that can be definitively called

“The Software Development Process.” The wide range of techniques used in practice,

however, can be thought of as lying on a scale between predictive and adaptive meth-

ods [29]. On the predictive end of the scale is up-front design [171], where the design
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Figure 2.1: Relationships between model and code in software development

of the system mostly takes place before implementation starts. This commonly results

in large design documents, which often use formalisms such as the Unified Modelling

Language (UML) [152].

In contrast, adaptive methods are characterised by agile development [121], where

the software is frequently inspected, and is subsequently adapted alongside the design.

The very nature of this process encourages the use of light-weight design documents,

and in many cases the only specification of a component is a suite of tests. This has

the advantage that any structural changes in the code must be reflected in the tests, and

vice versa, hence the code and specification remain synchronised.

One of the major problems with up-front design is that it is easy for the specification

to become out-dated as the implementation evolves. When changes are not reflected in

the specification documents, they not only become useless as an aid to understanding

the system, but any verification that took place at the design level can no longer be

trusted. For example, if we verify that a design satisfies some performance property,

but then make modifications when we come to implementing it, we have no guarantee

that the property will still hold of the system.

To address this problem, model-driven development [181] has been proposed as a

methodology. The idea is to view the model, rather than the code, as the primary object

of development. Fundamental to the approach is that we have a formal modelling

language, such as UML, and that there is a mapping — ideally with tool support —

between code and model. Figure 2.1 illustrates the different ways in which the code and

model can interact. The ultimate aim is to perform round-trip engineering [85, 125],

whereby changes in the code are reflected in the model and vice versa. This allows

developers to alternate between updating the model and the code. Whilst the model-
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driven approach is most closely associated with up-front design, it is not incompatible

with agile methodologies. Indeed, there are hybrid approaches, such as agile model-

driven development [10], where both modelling and test-driven development take place

in short, iterative cycles.

As far as commercial development goes, there has been a shift in recent years to-

wards agile methodologies, particularly within the scope of interactive and web-based

systems, where requirements are difficult to capture up-front. However, in a survey

of software developers in 2003, it was found that 30% of respondents were still using

the waterfall development model [132]. This evidence suggests that both adaptive and

predictive methods are still widely used throughout the industry.

Key to the success of any development practice is the tool support available.

Model-driven development requires tools to automatically generate skeleton code from

a model, and also to update the model based on changes made to the code. Test-driven

development requires an integrated and easy-to-use testing platform for the program-

ming language being used. Furthermore, with the rise in integrated development en-

vironments such as Eclipse [1] and Visual Studio [4], it is important for the uptake

of a tool that it integrates with these platforms. For a performance-driven approach

to development to be used in practice, it is therefore vital that we also develop tool

support.

2.2 Testing and Verification

An essential part of development is to ensure that an implementation is correct with

respect to a specification — in other words, that when we write a program, it does what

we want it to do. Ideally, we would like to verify that this is the case, to be sure that

the program is correct for all inputs. In general, this cannot be done by a brute-force

search, since the number of possible inputs is much too large. Instead, we need to build

an abstraction of the program, with a state space that is small enough to verify. The

central idea is that the abstraction must be ‘safe’ — if the abstraction satisfies a given

property in the specification then we can be sure that the original program also satisfies

it, but if the abstraction does not, we cannot infer anything about the program.

In most commercial development projects, bar certain safety critical systems such

as aircraft control, formal verification is not used due to its expense. Instead, develop-

ers accept that they cannot verify a program for all possible inputs, and instead con-

struct a set of tests for particular inputs. These tests should have a high coverage [186]
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Figure 2.2: Testing versus verification of programs

of the code, in that they test as many different execution paths as possible. There are

different levels of software testing — unit testing looks at the functionality of an in-

dividual component (such as a Java class), integration testing looks at the interaction

between components, and system testing looks at the entire system as a whole.

The difference between testing and verification is illustrated in Figure 2.2. The

black state indicates a violation of the specification, where the incorrect output is given

for some input. This violation may or may not be discovered during testing, depending

on the coverage of the tests. Formal verification will at worst conclude that there

might be a violation of the property, and at best that there is. However, unless we

can automatically abstract and verify a program, it is too time-consuming for most

developers.

The most widely used example of automatic verification is a type checker [139]. By

abstracting away from the actual values that a variable can hold, and only considering

the types of value, we can safely verify that, for example, a program never attempts

to store a floating point value in an integer variable. Further forms of abstraction and

verification, such as data flow analysis [12], are used internally by a compiler, in order

to safely apply optimisations. These techniques are related in that they all analyse

program code without actually running the program — they are collectively known as

static analysis [133].

An alternative approach to static analysis, particularly in the context of distributed

systems, is model checking [99]. The basic premise is to build an abstract model of the

system in question, in an abstract modelling language. One such example is Promela,
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Figure 2.3: Counterexample-guided refinement of source code

the language of the widely used SPIN model checker [97]. Properties of the model

are described in a temporal logic, and verification essentially becomes a question of

reachability — whether it is possible to reach a state that violates the property.

Since model checking requires significant skill on the part of the developer, there

has been a drive to look for ways to automate this process — namely, how to model

check real code, rather than an abstract modelling language. A recent success story

is the work on SLAM [22] and Blast [86], which has led to Microsoft’s static driver

verifier [21]. This is a tool that has been made freely available to Windows device

driver developers, allowing them to verify that their code conforms to the API. To give

an example of how error-prone device driver programming is, the tool discovered a

subtle bug in the standard parallel port driver, which has been available as part of the

driver development kit for many years, and undergone extensive testing.

Figure 2.3 shows how this process works. Firstly, the program (in C) is converted

into a Boolean program, by a process called predicate abstraction. This makes all

control flow decisions non-deterministic, and uses Boolean predicates in place of pro-

gram variables, so that the state space is small enough to model check. Of course,

this abstraction allows more possible behaviours than the original program, so if it

fails to satisfy the property, this does not mean that the original program also fails. In

this case, the model checker generates a counter-example to the property — namely,

a way to reach a state that violates the property. If this counter-example cannot occur

in the original program, the abstract program is then refined by adding an additional

predicate. This process continues until an actual counter-example is found, or else the

abstract program satisfies the property; in which case, so does the original program.
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There has been other work concerned with model checking source code directly.

One example is the C Bounded Model Checker (CBMC) [46], which uses bounded

model checking to verify properties of ANSI-C programs. This essentially means that

loops are unrolled only up to a certain limit, after which the possibility of re-entering

the loop is ignored. The program is then converted into static single assignment form,

and expressed as a logic formula C. We can then verify a property P by determining

whether C∧¬P is satisfiable — if it is, then the property is false.

A similar approach, applied to a higher level language, is the extended static

checker for Java (ESC/Java) [66]. This relies on user annotations in the Java Mod-

elling language (JML) [116], which assert properties that must hold at particular points

in the code. The tool translates these assertions, and the code itself, into an interme-

diate language of guarded commands, from which it can generate a set of verification

conditions. These are then passed to a theorem prover for verification. Other tools that

work at the language level aim to make verification and code maintenance easier for

developers. CCured [131], for example, allows legacy C code to be made type-safe,

and for various other analyses to be carried out. It makes use of the C Intermediate

Language (CIL) [130], which is an intermediate form of C, without its complicated

and ambiguous constructs.

We can take great heart from these successful applications of software verification

techniques at the level of program code. This is the sort of approach that performance

evaluation needs to take if it is to become more widespread throughout the development

community — we will discuss this further in Section 2.7.

2.3 Performance in the Development Process

We have so far discussed software development practices, and the testing and veri-

fication of software, with little reference to performance. Current industrial practice

regarding the specification, testing and verification of performance requirements is far

behind that of functional requirements. This is not to say, however, that good perfor-

mance practice does not exist in industry, and there are many application areas where

software performance engineering [167, 165] is successfully being applied.

It is important not to confuse performance engineering with performance tuning.

The former is concerned with designing and building a system that meets certain per-

formance criteria, whilst the latter is concerned with optimising an existing system, to

meet these criteria. Most development projects of any reasonable size undergo perfor-
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mance tuning in order to improve efficiency, but relatively few undertake disciplined

performance engineering, starting in the design phase.

This comes as quite a surprise, when we consider that mathematical models such as

queueing networks [110] were already being used in the 1960s in the context of time-

shared operating systems [109, 156]. In the 1970s, attempts were made to formalise

the design and specification of software performance criteria [80, 161], but this failed

to make its way into industrial development practice. In spite of this, advances in

mathematical modelling techniques continued to be made, and software performance

engineering began to emerge as a discipline in its own right [165].

The first stage in performance engineering is performance requirements capture,

which is typically done by constructing use cases — particular scenarios of the user

interacting with the system. Each use case will contain performance criteria — such as

the user receiving a response within a given time period — and therefore describes a

performance scenario. To verify that the design can satisfy this scenario, a performance

model needs to be built and analysed. There are many different modelling formalisms

that can be used to do this, and we will discuss them in Section 2.5.

It is important that performance engineering be viewed as a complementary ap-

proach, and not a replacement, for other software engineering methodologies. An

illustration of how it can take place in parallel with the usual stages of software devel-

opment is shown in [71], and more recently there have been extensions to UML that al-

low performance specification alongside behavioural specification [81, 82]. There has

also been some study of software performance anti-patterns [166], the aim of which

is to provide a set of design heuristics with respect to performance. A performance

anti-pattern is a design feature that tends to result in poor performance, and should not

generally be used. In other words, it highlights a common design mistake.

Although it is better to design a system with performance in mind, rather than

hope to fix it later, performance tuning is still a vitally important aspect of modern

software development. Even for well-engineered systems, it is considered bad practice

to optimise too soon at the algorithmic level, since ‘cleverer’ code is more likely to

contain bugs. To quote Knuth, “we should forget about small efficiencies, say about

97% of the time: premature optimization is the root of all evil” [111]. For this reason,

most development projects undergo performance testing [180] as part of the system

level testing, to identify where optimisation is required.

There are a number of testing strategies that fall under the umbrella of performance

testing. Load testing measures the system subject to a particular workload — often a
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characteristic, or benchmark workload. These measurements are then compared to the

performance specification, to determine whether optimisation is needed. Endurance

testing ensures that the system can maintain its performance over a sustained period

of time, with the aim of detecting any memory leaks. Stress testing pushes the system

beyond its performance limits, to verify that it fails in a safe manner, and subsequently

recovers.

Whilst performance testing is usually undertaken after integration testing — to-

wards the end of the development process — it can also take place much earlier. One

approach is to take the code that has already been implemented, and combine it with

stubs, generated from the use case that we want to test [58]. Performance testing can

also be carried out at the level of unit testing, where we examine the performance

properties of individual components. For example, JUnitPerf [2] is an extension to the

unit testing framework JUnit, which allows load testing of Java classes. Whilst this ap-

proach is hard to scale to system level performance properties, it can enable component

level performance bugs to be found at an early stage in development.

2.4 Measuring Performance

The key to performance testing is being able to observe and measure the behaviour

of a system. There are fundamentally two ways to approach this. Either we consider

the system as a black box, and measure performance information from the perspective

of the user (or an external system), or we analyse the code itself, to determine how

much time is spent in individual methods. The latter is known as profiling, and can

be used to identify the bottleneck components of the system — the most important

parts to optimise. This is probably the most widely used technique for performance

measurement in practice.

If we have support from the underlying virtual machine or interpreter, we can use

event-based profiling. Usually, an API provides hooks to the profiler, to inform it of

events such as calling a method or raising an exception. If such an API is not available,

we can use statistical profiling, where we periodically poll the current program counter

(by way of an operating system interrupt), and use this to build up an image of where

the program spends most of its time. An alternative approach is to first instrument the

program code, by adding instructions that explicitly calculate durations. This has the

disadvantage, however, that it might alter the behaviour of the program, introducing

so-called ‘heisenbugs’. In addition to identifying which parts of the program we spend
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the most time in — the bottleneck components — profiling can be used in conjunction

with static analysis to predict the average execution time, and its variance [153].

Although profiling is very useful for guiding the performance tuning of software,

we are often more interested in performance from the perspective of the user. In this

case, we want to measure observable performance criteria, such as response time or

throughput. Operational analysis [59] uses simple mathematical laws to derive perfor-

mance properties from observable data. For example, we can determine the bottleneck

components in a system, without requiring an elaborate measurement infrastructure.

In the compiler community, there is considerable interest in branch prediction —

namely, predicting whether or not a branch in the code will be taken [168]. This is re-

lated to profiling, in that modern superscalar processors store a cache of whether or not

each branch has been taken in the past, up to some history — essentially, profiling the

program. The past behaviour of the branch is used to predict its future behaviour, and

a correct prediction will maximise the number of useful instructions that the processor

executes [160]. There has also been interest in static branch prediction, whereby the

probability of taking a branch is determined at compile time. For example, value range

propagation [137] determines the range of values that a variable can possibly hold, in

order to predict the probability of a branch being taken.

In the context of large scale distributed systems, particularly those involving server

farms or grid computing [67], performance measurements are quite frequently used to

predict the future behaviour of the system. The general approach is to use models to

predict where a workload should be distributed in order to minimise response time,

power consumption, or some other property. For example, the work in [14] attempts

to predict the response time of a workload on a different server architecture to the one

currently being used. When the server is very busy, a workload can then be shipped to

a new server and still meet its performance contract.

2.5 Modelling Performance

Whilst measurement techniques are important for performance testing and dynamic

adaptability, if we want to evaluate the performance of a system before it has been

built, we have no choice but to build a model. This is necessarily an abstraction, based

on the design of the system, that captures its key performance criteria — this could be

for the whole system, or for a particular use case. There are generally two approaches

we can take to modelling — either we build a custom simulator of the system, or we
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build a mathematical model. We shall focus our attention on the latter.

Usually, when modelling a complex system, we cannot be certain about the dura-

tion of some events. For example, the time taken for a packet to travel across the net-

work will vary, depending on the amount of congestion and the particular route taken.

Hence, rather than being deterministic, durations are usually modelled stochastically.

There are many different stochastic formalisms, including queueing networks [110],

layered queueing networks [73], stochastic automata networks (SAN) [142], stochas-

tic Petri nets [20, 120, 127], and stochastic process algebras [28, 31, 87, 91, 145].

Most of these formalisms have a semantics based on the Markov chain [108], which

we will introduce formally in the next section. The key concept is the memorylessness

property, which means that the behaviour of the model depends only on its current

state, and not on how it arrived at that state. This condition inevitably restricts the

type of distribution that can be used to describe the duration of events — specifically

to geometric or exponential distributions, depending on whether we use a discrete or

continuous notion of time. This allows for efficient numerical analysis techniques, so

that we can compute performance measures of the model. There exist more general for-

malisms that relax this restriction, such as generalised semi-Markov processes [123],

but this makes numerical analysis much more difficult.

In addition to stochastic models, other formalisms are used to describe different

types of timed system. Timed automata [9] are important for analysing systems with

hard time constraints, such as real-time embedded systems. A timed automaton is es-

sentially a non-deterministic automaton with a clock, whose transitions are labelled

with constraints on the value of the clock — for example, requiring that we leave a

state between 5 and 10 seconds after entering it. Probabilistic timed automata [101]

allow us to include stochastic behaviour in such formalisms. In the context of con-

trol theory, where systems have both a discrete and a continuous element to their state

space, hybrid automata [8] have been developed. These can be thought of as an ex-

tension of timed automata, where clocks can represent quantities other than time —

for example, temperature — and can evolve over time according to an arbitrary set of

differential equations.

Throughout this thesis we will restrict our attention to stochastic models over an

entirely discrete state space, and we will present the basic notions that we build upon

in the remained of this section. In Section 2.5.1 we will introduce the basic notions

of discrete and continuous time Markov chains, before introducing the Performance

Evaluation Process Algebra (PEPA) in as a higher-level modelling language, in Sec-
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tion 2.5.2. We will then discuss techniques for dealing with the state space explosion

problem, in Section 2.5.3.

2.5.1 Markov Chains

A Discrete Time Markov Chain (DTMC) is essentially a state machine, whose transi-

tions are labelled with probabilities. It describes a dynamic system in which the state

evolves over time — but in discrete time steps. If we are in a state s at one moment in

time, then the model will move into state s′ at the next moment in time with a certain

probability — given by the label p on the transition s
p
−→ s′. This means that at any

moment in time, the state of the DTMC is given by a probability distribution over its

state space.

The formal definition of a DTMC is as follows:

Definition 2.5.1. A Discrete Time Markov Chain (DTMC) is a tuple (S ,π(0), P,L),

where S is a countable and non-empty set of states, π(0) : S → [0,1] is an initial prob-

ability distribution over the states, P : S ×S → [0,1] is a function describing the prob-

ability of transitioning between two states, and L : S × AP→ {tt,ff } is a labelling

function over a finite set of propositions AP.

Note that in order for π(0) to describe a probability distribution, it must be the case

that
∑

s∈S π
(0)(s) = 1, and similarly, for P to describe a probability distribution over the

choice of transition, we require that for all s ∈ S ,
∑

s′∈S P(s, s′) = 1.

The function P describes the probability P(s1, s2) of transitioning between two

states s1 and s2 of the Markov chain in a single time step. The duration of this time step

is not specified, in the sense that we describe only changes in the state space, and not

how long they take. As the DTMC evolves, we can describe a probability distribution1

π
(t) over its states at each point in time t — we this the transient distribution at time t.

For a DTMC (S ,π(0), P,L), and a distribution π(t), we can compute π(t+1) as follows:

π
(t+1)(s′) =

∑

s∈S

π
(t)(s)P(s, s′)

Figure 2.4(a) shows a graphical representation of a DTMC with five states: its state

space S = { s1, s2, s3, s4, s5 }. If we take an initial distribution π(0) such that π(0)(s1) = 1,

1Note that the traditional mathematical definition of a DTMC is in terms of a sequence of random

variables, indexed by time: X0,X1,X2, . . . — if we take the codomain of the random variables to be

(S ,P(S )), then Pr(Xt ∈ { s }) = π
(t)(s).
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Figure 2.4: Discrete and continuous time Markov chains

then we can iteratively compute the distribution for each point in time, using the above

equation:

s1 s2 s3 s4 s5

π
(0) = [ 1.0000, 0.0000, 0.0000, 0.0000, 0.0000 ]

π
(1) = [ 0.0000, 0.3000, 0.0000, 0.4000, 0.3000 ]

π
(2) = [ 0.1800, 0.1800, 0.3200, 0.1200, 0.2000 ]

π
(3) = [ 0.1080, 0.3340, 0.1320, 0.3120, 0.1140 ]

π
(4) = [ 0.2004, 0.1668, 0.2896, 0.1548, 0.1884 ]
...

π
(∞) = [ 0.1484, 0.2474, 0.2141, 0.2303, 0.1567 ]

Here, π(∞) = limt→∞π
(t) is called the steady state distribution. This limit exists for any

initial distribution, if the DTMC is ergodic. If the state space is finite, this requires

the DTMC to be irreducible — every state is reachable from every other state — and

aperiodic — it is not the case that any state can only be reached in multiples of k

time steps, for k > 2. Note that as an alternative to computing the above limit, we can

calculate π(∞) by solving the following set of linear equations:

π
(∞)(s′) =

∑

s∈S

π
(∞)(s)P(s, s′)

While a DTMC describes a system that evolves probabilistically at discrete moments in

time, it does not allow us to talk about the duration of each time step. We can introduce

a notion of time by associating with each state s in the Markov chain a random variable

X(s) that gives the sojourn time for the state — in other words, how long we remain

in the state before leaving it. If this is exponentially distributed with a rate parameter
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r(s), such that Pr(X(s)< t)= 1−e−r(s)t, then we have a Continuous Time Markov Chain

(CTMC). This is defined formally as follows:

Definition 2.5.2. A Continuous Time Markov Chain (CTMC) is a tuple (S ,π(0), P,r,L),

where S , π(0), P and L are defined as for a DTMC, and r : S →R≥0 assigns an exit rate

to each state. If r(s) = 0 then no transitions are possible from state s, and we require

that P(s, s) = 1, and P(s, s′) = 0 for all s′ , s.

By this definition, we allow the possibility of an exit rate of zero from a state. We inter-

pret this as an absorbing state, by stating that the probability of leaving the state is zero,

which ensures that for every state s,
∑

s′∈S P(s, s′) = 1. This is an unusual definition,

but it will be useful later in the thesis, when we look at compositional representations

of Markov chains (see Chapter 6).

Figure 2.4(b) shows a graphical representation of a CTMC — where we add an exit

rate to each state of the DTMC in Figure 2.4(a). As with a DTMC, we can compute

the steady state distrubution of a CTMC if it is ergodic. In this case, for a finite state

space, we require only that the CTMC is irreducible — periodicity is not possible,

since time is continuous. There are a number of ways to analyse both CTMCs and

DTMCs — either by numerical performance evaluation, model checking, or stochastic

simulation [77, 150]. We will look at stochastic model checking, and the use of logics

for property specification, in Chapter 5.

The formalisms we have introduced in this section are purely stochastic, in the

sense that the models they describe have no non-determinism in their behaviour. A

formalism that combines stochasticity with non-determinism is a Markov Decision

Processes (MDP) [146] — which can be either discrete or continuous time, as with

Markov chains. In a discrete time MDP, rather than making a probabilistic choice as

to the next state in the model, given that we are in a particular state, we make a non-

deterministic choice between several probability distributions. If we supply a strategy

for resolving the non-determinsim — known as a scheduler — then we end up with a

DTMC. Hence, we can view a discrete time MDP as describing a set of DTMCs.

Philosophically, there are two ways to interpret the non-determinism in an MDP.

One view is that the non-determinism describes part of the system that we cannot

control — for example, a user of the system. It is therefore an intrinsic part of the

model, since we want to account for all possible ways of interacting with the system.

The other view is that non-determinism is an abstraction, since it represents uncer-

tainty about the behaviour of the system — in other words, the system can really be
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described by a stochastic model, but we do not know which probabilities to use.

In the context of this thesis, we will primarily take the latter interpretation, where

we use non-determinism as an abstraction. We will introduce this idea more formally

in Chapter 5, when we look at abstractions of Markov chains.

2.5.2 The Performance Evaluation Process Algebra

Markov chains are an important mathematical formalism for performance modelling,

however working with them directly is cumbersome, particularly for very large models.

For example, if we want to build a model with a million states, we could not expect to

explicitly enumerate every state and every transition, without making mistakes. Math-

ematicians typically avoid this by describing the state space parametrically, but this

approach is not compositional, and requires a detailed understanding of the model at

the system level. Computer scientists, on the other hand, use high-level modelling lan-

guages to describe models compositionally — namely, modelling a system in terms of

smaller components. We can then compile the model into an underlying mathematical

formalism, such as a Markov chain.

In this thesis, we will take a particular focus on one modelling language — the

Performance Evaluation Process Algebra (PEPA) [91]. PEPA is a stochastic process

algebra, which can be used to compositionally describe a CTMC. In PEPA, a system

is a set of concurrent components, which are capable of performing activities. An

activity a ∈ Act is a pair (a,r), where a ∈ A is its action type, and r ∈ R≥0 ∪ {⊤} is

the rate of the activity. This rate parameterises an exponential distribution that gives

the duration of the activity, and if unspecified (denoted ⊤), the activity is said to be

passive. This requires another component in cooperation to actively drive the activity.

Because every activity has a duration, there is no non-determinism in PEPA, unlike in

some other stochastic process algebras such as IMC [87].

PEPA terms have the following syntax:

CS := (a,r).CS | CS +CS | A

CM := CS | CM ⊲⊳
L

CM | CM/L

We call a term CS a sequential component, and a term CM a model component. To

define a PEPA model, we need to identify a particular model component that describes

its initial configuration, which we call the system equation. The meaning of each

combinator is as follows:
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Server
def

= (request,⊤).Server′

Server′
def

= (serve,rs).Server′′

Server′′
def

= (response,rd).Server

Client
def

= (request,ra).Client′

Client′
def

= (response,⊤).Client

Server ⊲⊳
{request,response }

(Client ‖ Client)

Figure 2.5: An example PEPA model and its underlying CTMC

• Prefix ((a,r).C): the component can carry out an activity of type a at rate r to

become the component C.

• Choice (C1 +C2): the system may behave either as component C1 or C2. The

current activities of both components are enabled, and the first activity to com-

plete determines which component proceeds. The other component is discarded.

• Cooperation (C1 ⊲⊳
L

C2): the components C1 and C2 synchronise over the coop-

eration set L. For activities whose type is not in L, the two components proceed

independently. Otherwise, they must perform the activity together, at the rate of

the slowest component. When L = { }, we write C1 ‖C2 .

• Hiding (C/L): the component behaves as C, except that activities with an action

type in L are hidden, and appear externally as the unknown type τ.

• Constant (A
def

=C): the name A is assigned to the component C.

If a PEPA component can perform more than one activity of the same action type a,

then to an observer it appears to be capable of performing a at the sum of the rates of

these activities. We therefore need a notion of apparent rate. The apparent rate ra(C)

of action type a in component P is defined as follows:

ra((b,r).C) =















r if b = a

0 if b , a

ra(C1+C2) = ra(C1)+ ra(C2)

ra(C/L) =















0 if a ∈ L

ra(C) if a < L

ra(C1 ⊲⊳
L

C2) =















min{ra(C1),ra(C2) } if a ∈ L

ra(C1)+ ra(C2) if a < L
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P

(a,r).C
(a,r)
−−−→C C

C
(a,r)
−−−→C′

A
(a,r)
−−−→C′

(A
def

=C)

C1

C1

(a,r)
−−−→C′1

C1+C2

(a,r)
−−−→C′1

C2

C2

(a,r)
−−−→C′2

C1+C2

(a,r)
−−−→C′2

S1

C1

(a,r)
−−−→C′1

C1 ⊲⊳
L

C2

(a,r)
−−−→C′1 ⊲⊳L C2

(a < L) S2

C2

(a,r)
−−−→C′2

C1 ⊲⊳
L

C2

(a,r)
−−−→C1 ⊲⊳

L
C′2

(a < L)

S3

C1

(a,r1)
−−−−→C′1 C2

(a,r2)
−−−−→C′2

C1 ⊲⊳
L

C2

(a,R)
−−−−→C′1 ⊲⊳L C′2

(a ∈ L), where R =
r1r2 min{ra(C1),ra(C2) }

ra(C1)ra(C2)

H1

C
(a,r)
−−−→C′

C/L
(a,r)
−−−→C′/L

(a < L) H2

C
(a,r)
−−−→C′

C/L
(τ,r)
−−−→C′/L

(a ∈ L)

Figure 2.6: The operational semantics of PEPA

The reason for summing the apparent rates in the case of a choice is that both activities

take place in parallel — the first one to complete determines which choice is made.

In other words, we are taking the minimum of two exponential distributions with rate

parameters r1 and r2, which is itself an exponential distribution with rate parameter

r1+ r2. This is in contrast to the cooperation combinator, where we take the minimum

of the rates, rather than the distributions. The justification for this interpretation of

synchronisation is discussed at length in [90].

The operational semantics of PEPA is shown in Figure 2.6, and defines a labelled

multi-transition system for a PEPA model. If a component C can evolve to compo-

nent C′ by a series of transitions — namely, C
(a1,r1)
−−−−−→ ·· ·

(an,rn)
−−−−−→ C′ — then we call C′

a derivative of C. The derivative set ds(C) is the set of all derivatives of C. These

derivatives, and the transitions between them, form a derivation graph. Since the du-

ration of a transition in this graph is exponentially distributed, we can sum the rates on

all transitions between two states in the derivation graph to generate a CTMC.

An example of a PEPA model, along with its underlying CTMC, is shown in Fig-

ure 2.5. It consists of three sequential components — a server and two clients. Each
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client synchronises with the server over the request and response action types, but is

independent of the other. This means that the server makes an internal choice between

which client to serve, as is seen in the CTMC. The rates are parameterised as ra, rs,

and rd, and if we substitute them for real values (in R≥0), we get a concrete CTMC.

As an alternative to the Markovian semantics of PEPA, a semantics has been given

in terms of ordinary differential equations [92]. When we have several copies of the

same sequential component in the system equation, such as the clients in the exam-

ple, the CTMC records precisely which component is in each state. The differential

equations, however, record just the number of components in each state2. Since differ-

ential equations are continuous, this represents a fluid-flow approximation, capturing

the evolution over time of the average number of components in each sequential state.

PEPA models can also be analysed using stochastic simulation [33].

2.5.3 The State Space Explosion Problem

The problem with compositional formalisms such as PEPA is that they allow us to very

easily define Markov chains that are exponentially large with respect to the size of their

description. For example, if a model has six components, each having ten states, then

the underlying Markov chain can have up to a million states. Since many models of

real-world systems have extremely large state spaces, there has been a huge amount of

research looking at ways to reduce the size of models. The best available tools, such

as the PRISM model checker [114] can handle models of size 107–108 states, and can

even handle up to 1011 states under special circumstances (i.e. if the model exhibits a

certain structure). However, many models can be much larger that this in practice, and

we need a way of dealing with them.

There are two key ideas to reducing the size of a Markovian model — decomposi-

tion and aggregation. Decomposition structurally breaks apart the model into compo-

nents that can be solved separately. Aggregation, on the other hand, combines states

that exhibit similar behaviour, to create a smaller model that is easier to solve.

The best example of a decomposition technique is when a Markov chain has a

product form solution. This means that it is possible to decompose the Markov chain

into components, so that its steady state solution can be expressed as a product of

2Note that this is not just a counting abstraction of a Markov chain, where we aggregate states the

correspond to the same number of each type of component, since they are lumpable. Instead of having

a discrete state stochastic model (given by a CTMC), we have a continuous state deterministic model

(given by a system of differential equations).
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the components’ solutions. Product forms have been widely studied in the context of

queueing networks [24], and also for SAN [70] and PEPA [95, 45]. The difficulty is that

they are rare in practice, requiring particular forms of interaction between components.

Aggregation techniques, on the other hand, are concerned with grouping states

into partitions, which can then be represented by a single state in a reduced model. In

general, it is not possible to combine states and still end up with a Markov chain, unless

certain strict conditions apply. A partitioning of a Markov chain is lumpable [108] if

the probability of moving between partitions is independent of the particular state we

are in. In this case, the abstraction is said to be exact — if we solve the lumped Markov

chain, the steady state probability of being in one partition is equal to the sum of the

steady state probabilities in the original Markov chain of the states in that partition.

There are several different variants of lumpability, including ordinary lumpabil-

ity [108], exact lumpability [158], strict lumpability [158] and weak lumpability [108],

which we will discuss in more detail in Chapter 5. If the Markov chain is not quite

lumpable, but the probability of moving between partitions is almost the same for ev-

ery state in a partition, it is said to be quasi-lumpable [57]. The aggregated Markov

chain will approximate the aggregated solution of the original.

An alternative basis for aggregation is insensitivity [154, 155]. If we aggregate a

sequence of states in a Markov chain, then the sojourn time of the state will satisfy

a more general phase type distribution, rather than being exponential. Although this

no longer satisfies the Markov property, we can safely replace this distribution with an

exponential distribution of the same mean, only if we can be certain that the activity

will never be interrupted — there can be no other components that can independently

perform activities at the same time as the aggregated activity. This ensures that the

steady state probability distribution is the same, but not the transient probabilities.

More precisely, the steady state distribution of the Markov chain is insensitive to the

actual distribution of the activity, and depends only on its mean duration.

Rather than performing a purely structural decomposition, or an abstraction, there

are also a number of methods for solving the steady state distribution of a Markov

chain, based on both. These Decomposition/Aggregation (D/A) techniques [159, 126]

work by structurally decomposing the Markov chain into distinct partitions. Each par-

tition can be analysed separately, but the Markov chain can also be aggregated, so that

each partition is represented by a single state. By taking the product of the local and

aggregate steady state probabilities, we can approximate the steady state distribution

of the original Markov chain.
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Time scale decomposition [11, 49, 163] is one application of this technique, based

on separating transitions into those with fast rates and those with significantly slower

rates. By ignoring the slow transitions, we can partition the state space into connected

components on the basis of the fast transitions. This leads to a nearly completely

decomposable [57] transition matrix, which can be solved by the method of Decom-

position/Aggregation.

Another technique is response time analysis [100, 40], where we look for a single-

in single-out (SISO) cut through the transition system. This allows us to consider the

system as two parts, and we can solve each part independently by aggregating all the

states in the other to a single state. Feeding the steady state information from each

part back into the other, we can iteratively solve each part in turn, until we (hopefully)

converge on the steady state distribution of the entire system.

2.6 Performance Analysis from Specifications

In relation to performance engineering, there has been a great deal of interest in ex-

tracting performance models from specification formalisms. The idea is to make use

of existing design documents — with which software developers are familiar — rather

than requiring them to use separate modelling languages. Since UML [152] is the

specification language most widely used in development, much of this research has

focused on extracting various types of performance model from UML diagrams. UML

provides a wide range of diagrams, allowing both structural and behavioural properties

to be specified, both from the high level perspective of the user, and a lower level imple-

mentation perspective. For example, use case diagrams describe a user-level view of

a particular interaction with the system, whereas class diagrams present a lower-level

structural view of the system.

Although these diagrams are inherently functional — they describe what the system

should do rather than how fast it should do it — performance information such as rates

can be added as annotations [143, 184]. The Object Management Group has to date

produced two specifications for UML performance annotations — in 2005 it released

the UML Profile for Schedulability, Performance and Time Specification (SPT) [81],

which was superceded in 2008 by the UML Profile for Modelling and Analysis of Real-

Time and Embedded Systems (MARTE) [82]. The motivation behind these schemes

is to take advantage of existing UML diagrams, so that designers do not need to learn

to use additional performance-specific diagrams.
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Each type of UML diagram can support performance engineering in different ways.

For example, while use case diagrams are too high level to usefully describe perfor-

mance properties of the system, they can be used to identify workloads — the input to

a performance model [144]. It was also suggested in [144] that sequence diagrams are

useful for describing transient behaviour, whereas collaboration diagrams are of more

use in describing a system’s longer term steady state behaviour.

The SPT performance profile allows both instances of objects and the actions they

perform to be labelled with performance information. This is specified by a stereotype,

which describes the general performance characteristics of the object/action, along

with a number of parameters that define its specific behaviour. Performance analysis

is carried out with respect to a scenario — an ordered sequence of operations that the

system performs — and a workload — the environment in which the scenario takes

place. The MARTE performance profile improves upon SPT by updgrading to UML2,

including real-time mechanisms and richer models of time, and supporting different

analysis domains, such as energy consumption and reliability.

To make it easier to transform annotated UML diagrams into performance mod-

els, and to provide a common framework for the different modelling formalisms, the

Core Scenario Model has been proposed as an intermediate language [138]. In ad-

dition, UML diagrams have been translated into a wide range of performance mod-

elling formalisms, including queueing networks [144, 47], stochastic Petri nets [118],

PEPA [41, 179], and MoDeST [88]. An alternative approach is taken by UML-Ψ [122],

which uses discrete event simulation to evaluate the performance characteristics of an-

notated use case, activity and deployment diagrams. There is a vast amount of literature

on performance modelling and UML, and this is just a small sample.

In the context of PEPA, it was shown in [41] how to generate a model from state-

chart diagrams (for sequential components) and a collaboration diagram (for the sys-

tem equation). By automatically translating performance-annotated UML to PEPA,

and reflecting the analysis results back to the UML model, the designer does not re-

quire an in-depth knowledge of performance modelling. More recently, PEPA models

have also been generated from MARTE-annotated sequence diagrams [179].

2.7 Performance Analysis from Source Code

Unlike in the qualitative world, there has been very little work in relating performance

analysis to program code. This is largely because performance properties are usually
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much more global — depending on the context in which a program is run, as much as

the program code itself. In general, it is difficult to apply the same sort of abstraction

techniques that led to the success of Microsoft’s static driver verifier, since control flow

decisions depend on the actual values of variables. Since we are concerned with the

probability of each control flow decision, rather than the possibility, we would need

information about the distribution of values of the program’s variables, at the time that

each control flow decision is made.

The work in [65] avoids this problem by completely abstracting away from a pro-

gram’s data flow. Instead, they abstract control flow to a ‘service effect automaton’,

using annotations to describe the probabilities of control flow decisions. Calls to other

functions or services have a duration, given as a random variable, and the duration of

the entire automaton is calculated by composing these. Using the Quality of Service

Modelling Language (QML) [74], properties of the required execution-time distribu-

tion can be specified and then verified.

In contrast to program code, there has been considerably more work that focuses

on higher level languages — for example those used for orchestrating distributed sys-

tems such as web services. One such language is the Web Services Business Process

Execution Language (WS-BPEL) [135], which is used to describe how web services

interact with external systems. WS-BPEL specifications have been mapped to a num-

ber of performance modelling formalisms, including layered queueing networks [54]

and PEPA [183]. A similar notion to orchestration is found in parallel programming

systems, where algorithmic skeletons are often used to describe the structure of par-

allel and sequential operations. There has been some work on translating algorithmic

skeletons to performance models — for example, to PEPA [185].

The problem with these approaches is that all the required performance information

must be specified in annotations. This is reasonable at the specification level, where we

incorporate performance criteria into the design, but once we have an implementation

we should be able to infer at least some information from the code itself. One of the

goals of this thesis is to illustrate an approach for doing this, and we will describe a

technique for generating PEPA models from program code in Chapter 4. Before doing

so, however, we need to introduce the language on which we will base our analysis —

the Simple Imperative Remote Invocation Language (S).





Chapter 3

A Language for Distributed

Programs with Remote Invocation

If there is a single message that we want to present in this thesis, it is that developers

should be able to reason about performance during the development process, without

requiring years of expertise in mathematical modelling. For our goal of performance-

driven development to succeed, we need to build tool support for relating program code

to performance models. This means — as we motivated in the previous chapter —

being able to automatically derive such a model from the code. The challenge of

doing this for real languages is immense, and so for the purposes of this thesis we will

introduce and work with a simple programming language, whose programs we can

formally analyse in order to build probabilistic models of their behaviour.

Let us take a moment to consider why we should want a probabilistic model of

a program — after all, is software not inherently designed to be deterministic? The

hardware that it runs on is deterministic (if we ignore the effect of cosmic rays and

extra-terrestrials), and users expect it to behave in a predictable, deterministic manner.

The answer ultimately boils down to abstraction — the software running on an average

computer is so complex that any attempt at reasoning about its precise behaviour is

futile. For example, to predict the running time of even the simplest program, we

would need to know the behaviour of the operating system, the hardware, and the

exact state of the system when we execute it. If we take empirical measurements of the

running time, however, we will find that it follows some distribution. That is to say,

we will observe the underlying deterministic system as a probabilistic system.

In general, this sort of probabilistic behaviour is a result of uncertainty in the en-

vironment in which the program runs. This might be uncertainty about the state of

37
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the operating system (in particular, the process scheduler), but it could just as easily

be the state of the network that eludes us, leading to uncertainty in the transit time of

a packet. Yet even in this probabilistic world we can have difficulty reasoning about

the behaviour we observe. The probability distribution of the environment will, in

general, be very complex (and likely unrepresentable), and the distribution of the pro-

gram’s output even more so. Because of this, there is a need for a second layer of

abstraction, where we approximate these probability distributions. For example, we

may only be interested in the mean and variance of a particular variable, in which case

we can abstract away all the higher order moments. Abstraction is the key to building

a model of the system that we can actually work with — the challenge is to make it

computationally simple enough without losing the information we care about.

Before we look at this latter form of abstraction — which is the subject of Chap-

ter 4 — we need to establish the concrete language that we will work with. In this chap-

ter, we introduce an imperative programming language called S, which has integer

variables, and remote invocation features in addition to imperative constructs. In Sec-

tion 3.1 we present the syntax of S, and give an example of a simple client-server

system. We present some background to probabilistic semantics of programming lan-

guages in Section 3.2, before describing the semantics of S in Section 3.3. Finally,

we give a probabilistic interpretation of this semantics in Section 3.4, and discuss how

we might obtain a compositional performance model in Section 3.5.

3.1 The Language S

Before we can hope to analyse real-world languages such as Java and C, we need

to build techniques that work for a much simpler language. In particular, we need a

language that is as small as possible, whilst still containing the features that we want

to analyse. Since the aim of this thesis is to analyse the performance characteristics

of distributed software, the most important features to include are concurrency and

remote invocation. We will not consider pointers and aliasing, recursion, or looping

behaviour. This latter restriction is a somewhat severe consequence of our analysis,

and we hope to be able to relax it in the future. We will show how to extend S with

loops in Appendix A, and discuss the difficulties that arise when we apply our analysis

in this setting.

The Simple Imperative Remote Invocation Language (S) is at its core an im-

perative language with integer variables and conditional branching. A S program
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consists of a number of statically defined and immutable objects, each providing an

interface in terms of a set of method definitions. Methods on different objects can be

invoked in the style of a remote procedure call (RPC). As an example, we might have a

Server object that provides a method requestPage(·), and this can be remotely invoked

using the syntax Server.requestPage(x) for some local variable x. To state this more

formally, a S program consists of the following elements:

1. A finite set of immutable objects (identified by strings), which we will denote

by the metavariable O. Objects exist for the lifetime of the S program, and

cannot be created or destroyed.

2. A finite set of methods associated with each object, which we will denote by

O. f . Each method has a fixed arity, specified at the time of definition, which

takes the following form (we will shortly define the syntax for commands C):

O. f (X, . . . ,X) {C }

Since each method is defined statically, we will write def (O. f ) to denote the

definition (in the above form) of the method O. f .

3. A finite set of variables which we will denote by X. We assume that there are

no overlaps between variable names in different methods (including those cor-

responding to arguments), which means that we have a single set of variables

for the entire system. Since there are no shared variables — the objects do not

maintain state — this can be achieved by alpha-renaming. For reasons that will

be made clear in Section 3.3, each method also has an implicit variable, XO. f , in

which to store the value it returns.

The objects in a S program can be thought of as existing in parallel, but nothing

happens until one of their methods is invoked. An object represents a single resource,

which means that only one of its methods can be invoked at any one time. An in-

stantiation of a S program is a call to one of its methods, O. f (x1, . . . , xn), where

x1, . . . , xn are the initial arguments, or inputs. For the purposes of this chapter, we

will just consider a single instantiation, but when we come to generate performance

models in Chapter 4, it will be useful to also consider both repeated sequential instan-

tiations — such as a client repeatedly requesting data from a server — and parallel

instantiations — such as several clients attempting to connect to a server at once.

In S, arithmetic expressions have the following syntax (c ∈ Z are constants):
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E ::= c | X | −E | E+E | c×E

It is important to note that we only allow linear expressions — we cannot multiply two

variables together in an expression. This is not a necessary condition for the semantics

in this chapter, but is required for our analysis in the next chapter. Our motivation is to

focus on control-flow branching and communication between objects, rather than more

complex arithmetic. However, since non-linear arithmetic can be encoded in loops, the

omission of these two features is related.

The Boolean expressions in the language are as follows:

B ::= true | X < c | X ≤ c | ¬B

Without loss of generality, we only allow a variable to be compared with a constant —

we can always construct more complex comparisons by first defining a new variable.

Furthermore, conjunction and disjunction of conditions can be expressed by the nesting

of if-statements, so are not necessary as primitives.

Commands have the following form, where q is a real number in the interval [0,1]:

C ::= skip | return E | X := E | X := f (X, . . . ,X)

| C ; C | if B then C else C

| pif q then C else C | X := O. f (X, . . . ,X)

Most of the above is self-explanatory, but branches and method calls require some fur-

ther explanation. We include two types of conditional statement — a classical version,

if, where the branch is determined by a Boolean condition B, and a probabilistic ver-

sion, pif, where the first branch is taken with probability q, and the else-branch with

probability 1−q. Note that probabilistic branching can be viewed as a special case of

conditional branching, since we could encode it using an external random variable (in

essence, a random number generator). It is useful to have this as a primitive in our

language, however, since it allows us to directly deal with more abstract programs —

for example, in the case of partially written code, where we might use a probabilistic

branch as a placeholder for a conditional branch.

Method calls are either local (X := f (X, . . . ,X)) or remote (X := O. f (X, . . . ,X)),

where the former is shorthand for invoking a different method on the same object as

that of the current method. The fact that we use synchronous communication, by way

of remote procedure calls, may seem counter to the reality that systems built on top

of a packet-switched network layer (such as IP) are inherently asynchronous. There

are two main motivations for this choice. The first is that many distributed systems —
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such as web services — are built on top of middleware that provides the abstraction of

synchronous communication. In other words, this is a natural programming paradigm

for a large number of applications. The second motivation is that asynchronous com-

munication could be encoded in our language if we were to allow both stateful objects

and looping behaviour — the latter is needed to implement polling. This is not possible

in our language at present, for reasons that we will touch upon in the conclusions of

this thesis, but it provides an interesting direction for future research — in particular,

see Appendix A for a discussion on adding loops to the S language.

It is important to note that the syntax of S does not in itself forbid recursion,

even though we wish to impose such a restriction so that we can feasibly carry out a

performance analysis of S programs in the next chapter. To formally prohibit recur-

sive programs — including those using multi-step recursion — we first need to deter-

mine which methods can call one another. We can over-approximate the set of methods

that a given method calls as follows — Call(def (O. f )) returns the set of method names

that occur syntactically in the method O. f :

Call(O. f (X1, . . . ,Xn){C }) = CallO. f (C)

CallO. f (skip) = { }

CallO. f (return E) = { }

CallO. f (X := E) = { }

CallO. f (X := f ′(X1, . . . ,Xn)) = {O. f ′ }

CallO. f (X := O′. f ′(X1, . . . ,Xn)) = {O′. f ′ }

CallO. f (C1 ; C2) = CallO. f (C1)∪CallO. f (C2)

CallO. f (if B then C1 else C2) = CallO. f (C1)∪CallO. f (C2)

CallO. f (pif q then C1 else C2) = CallO. f (C1)∪CallO. f (C2)

This allows us to define a call graph for a S program, as follows:

Definition 3.1.1. The syntactic call graph of a S program is a pair (V,E), where

V = {Oi. f | 1 ≤ i ≤ M, f ∈ F (Oi) } is a set of nodes corresponding to each method O. f

in the program, and E ⊆ V ×V is an edge relation: there is an edge (O1. f1,O2. f2) ∈ E

iff O2. f2 ∈ Call(def (O1. f1)).

Using this, we can state a well-formedness condition for S programs, which we call

syntactically non-recursive. Crucially, no method in a syntactically non-recursive S

program will ever recursively call itself, after any number of steps. It is possible, how-

ever, to write a S program that does not exhibit recursion, but is not syntactically

non-recursive.
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Definition 3.1.2. A S program is syntactically non-recursive if its syntactic call

graph is acyclic.

In the remainder of this thesis, we will implicitly assume that we are only con-

sidering syntactically non-recursive S programs. This is important to remember

when we present the denotational semantics for the sequential fragment of S in

Section 3.2, as it would otherwise be ill-founded.

3.1.1 Writing Programs in S

In order to construct some readable examples of S programs, we will introduce a

few derived terms that extend the syntax we presented. These are simply shorthand

notations, and do not increase the expressive power of the language. For arithmetic

and Boolean expressions, we can define the following:

E−E , E+ (−E) false , ¬true

X ≥ c , ¬(X < c) X > c , ¬(X ≤ c)

In addition, we will often want to write conditions that test whether a variable is equal

to a constant, or that compare two arbitrary arithmetic expressions (as opposed to just

a variable and a constant). These can be encoded in S as follows:

if (X = c) then C1 else C2 , if (X ≤ c) then

(if (X ≥ c) then C1 else C2)

else

C2

if (E1 E E2) then C1 else C2 , Y := E1−E2;

if (Y E 0) then C1 else C2

where E ∈ {<,≤,>,≥,= }, and Y is a fresh variable name. Note that in the latter case, we

need to introduce a temporary variable on which we perform the actual comparison.

We will also avoid writing the else clause of a conditional, when the body is skip:

if B then C , if B then C else skip

pif q then C , if B then C else skip

As an example of a S program (making use of the shorthands that we have in-

troduced), consider Figure 3.1. This consists of two objects, Client and Server, and

is instantiated by a call to Client.buy. The client first queries the server to determine
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Client.buy(quantity, cash) {

price := Server.getPrice(quantity);

if (price ≤ cash) then

success := Server.buy(quantity);

if (success = 1) then

cash := cash − price;

return cash

}

Server.getPrice(quantity) {

if (quantity > 0) then

if (quantity > 10) then

return 8 × quantity

else

return 10 × quantity

else

return 0

}

Server.buy(quantity) {

max order := 100;

if (quantity ≤ max order) then

return 1

else

return 0

}

Figure 3.1: An example of a client-server system in S
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LossyServer.request(data) {

response := -1;

pif (0.9) then

response = Server.request(data);

return response

}

LoadBalancer.request(req) {

pif (0.5) then

response = ServerA.request(data)

else

response = ServerB.request(data);

return response

}

Figure 3.2: Two examples of network behaviour, corresponding to packet loss and

load balancing

the cost of purchasing a number of items, specified by the quantity argument. If there

are sufficient funds available, it then attempts to buy that number of items, although

the server will reject this if it is greater than the maximum allowed order size. If the

transaction is successful, Client.buy computes and returns the new available funds,

and otherwise returns the original value of cash.

To perform a useful analysis of the overall system, it is essential to know something

about the network behaviour. For example, the client-server system only becomes

interesting when we consider factors such as the time taken to send a message on the

network, and/or the probability of packet loss. There are two ways in which we might

include such information — build it into the semantics of the language, or encode it

in the program itself. Since there is no way to directly talk about time in S —

which is really an externally controlled factor — we will take the semantic approach

in Section 3.4. For network behaviours that are time-independent, such as when there

is a fixed probability of packet loss, we will assume that they are directly encoded in

the program — this allows more flexibility.

Two examples of such encodings are shown in Figure 3.2, where we build wrappers

around a Server object. The first, LossyServer, implements a network where there
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is a 10% chance of a packet being lost. The second is a load-balancer, which forwards

any request it receives to either ServerA or ServerB with equal probability.

3.2 Probabilistic Semantics of Programs

There are several ways in which we can assign a meaning to a program. The two

most widely used approaches are denotational semantics, where the program is viewed

as a mathematical function between an input and an output domain, and operational

semantics, where the program is viewed as a transition system. The difference between

these approaches is apparent when we look at the treatment of loops. In a denotational

semantics, a loop is the least fixed point of the function that describes a single iteration

of its body. In an operational semantics, a loop is the transitive closure of the transition

relation describing its body.

Since S does not contain loops, we could choose to describe its semantics either

operationally or denotationally. In this section, we will present a denotational seman-

tics for single-threaded S programs, because it allows us to describe the operation

of a sequence of commands as a single mathematical operator. This is advantageous

with respect to our ultimate goal of constructing a performance model from a S

program, since it avoids describing each command as a separate execution step, which

would correspond to a separate state in the performance model. In Section 3.3, we

will extend this to multi-threaded S programs, by adding an automaton structure

to the denotational semantics, which will allow us to separate the execution steps of

different threads. We could have achieved a similar result using a big-step operational

semantics (otherwise known as a natural semantics) [103], but this would have made

our treatment of multi-threading more cumbersome.

In a classical — non-probabilistic — denotational semantics, partially ordered do-

mains are used to describe the input and output of a program, as per Scott and Stra-

chey [173]. The meaning of a program is then a continuous function between these

domains. This approach was first extended to a probabilistic setting by Kozen [112],

who replaced the partially ordered domains with vector spaces.

Kozen presents two alternative approaches to developing such a semantics. The

first approach is to treat the program’s variables as random variables. The output is

then a new random variable that is a function of the inputs — to sample the output, we

first sample the inputs, and then apply the program deterministically. This has several

shortcomings, most notably when the program itself contains a source of randomness,
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in which case we must keep track of a stack of random variables. The second approach

is for the input to be a measure on a measurable space. In this setting, a program is no

longer a map between an input and an output value, but a map between an input and

an output probability measure. These measures form a partially ordered vector space,

and we can directly extend the Scott-Strachey style of denotational semantics to this

setting.

For the purpose of this thesis, we will only look at this second approach of Kozen.

To use this to describe a probabilistic semantics of S, we first need to introduce

some definitions from measure theory [42]:

• A σ-algebra on a set X is a subset of P(X) that contains ∅ and X, and is closed

under countable union and countable intersection.

• A measurable space (X,σX) is a set X with a σ-algebra σX. The elements of σX

are called the measurable subsets of X.

• A measurable function is a function f : (X,σX)→ (Y,σY) that is well behaved;

namely, f −1(σY) ⊆ σX.

• A measure is a countably additive function µ : σX → R≥0 over a measurable

space (X,σX). We can perform addition and and scalar multiplication of mea-

sures on the same measurable space in a pointwise fashion: for measures over

(X,σX), (µ1 + µ2)(x) = µ1(x)+ µ2(x) and (cµ)(x) = c(µ(x)), for all x ∈ σX and

c ∈ R≥0.

• The total weight of a measure µ on a measurable space (X,σX) is given by µ(X).

• A probability measure is a positive measure with total weight 1.

• A measure space (X,σX,µ) is a measurable space (X,σX) equipped with a mea-

sure µ. We write B(X,σX) for the set of all measures on the measurable space

(X,σX) — this defines a vector space, due to the addition and scalar multiplica-

tion operators over measures.

• A probability space is a measurable space equipped with a probability measure.

• A random variable is a measurable function whose domain is a probability

space.
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• The Lebesgue measure m∗(X) of a set X ⊆R is given as follows, where l(I)= b−a

for any interval I = [a,b], (a,b], [a,b) or (a,b):

m∗(X) = inf
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• A set X ⊆ R is Lebesgue-measurable if for every set Y ⊆ R:

m∗(Y) = m∗(Y ∩X)+m∗(Y ∩ (R\X))

We writeM for the set of all Lebesgue-measurable1 subsets of R.

• A Banach space (V,‖ · ‖) is a complete normed vector space — it consists of a

vector space V , equipped with a norm ‖ · ‖ : V → R≥0 on elements v ∈ V such

that for every sequence v1,v2, . . . in V , such that limi→∞ ‖vi+1−vi‖ = 0 (i.e. it is a

Cauchy sequence), has a limit in V .

Consider the vector space B(X,σX) of measures over the measurable space (X,σX).

If we define a norm ‖ · ‖ on the measures µ ∈ B(X,σX) such that ‖µ‖ = µ(X) (i.e. the

norm of a measure is its total weight), then (B(X,σX),‖ ·‖) forms a Banach space [112].

The completeness of the norm follows from the completeness of the non-negative reals

R≥0, and the countable additivity of measures.

We can now define a probabilistic denotational semantics J·Kp, for single-threaded

S methods, in the style of Kozen [112] — we will extend this to include remote

procedure calls in Section 3.3. It is important to recall that the syntax of S allows

only allow integer-valued variables — the semantics we present, however, will be in

terms of continuous measures. This means that our semantics will lift the domain of

the variables from the integers to the reals, and therefore is more general with respect

to the the measures over the state of the variables that are possible.

A method in S operates on a fixed set of N variables, including its arguments,

and each of these is considered to be real-valued for the purposes of the semantics.

Let B = B(RN ,M(N)) be the set of measures on the Cartesian product of N copies

of the measurable space (R,M) — M(N) is the σ-algebra generated from the set of

products of N sets from M (the Lebesgue-measurable subsets of R). Then we will

1To construct an example of a non Lebesgue-measurable subset of R, define an equivalence relation

on R ⊂ [0,1]× [0,1] — we say that (x,y) ∈ R iff x− y is rational. We can then use R to partition [0,1]

into disjoint equivalence classes Ai (of which there are countably many), and use the axiom of choice to

select a single characteristic element ai from each Ai: the set of all such ai is not Lebesgue-measurable.

This is called a Vitali set. For a proof that Vitali sets are not Lebesgue-measurable, see the Appendix

of [42].
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JcK(x) = c JtrueK(x) = true

JXiK(x) = xi JXi < cK(x) = xi < c

J−EK(x) = −JEK(x) JXi ≤ cK(x) = xi ≤ c

JE1+E2K(x) = JE1K(x)+ JE2K(x) J¬CK(x) = ¬JCK(x)

JcEK(x) = cJEK(x)

Figure 3.3: Deterministic semantics of arithmetic and Boolean expressions in S

define J·Kp : (B,‖ · ‖)→ (B,‖ · ‖) as a continuous linear operator on the Banach space

(B,‖ · ‖) (we will prove that this is the case in Theorem 3.2.1). Note that the linearity

of the semantics is unrelated to our restriction of S to linear arithmetic expressions,

and would hold for more general expressions, such as in [112].

The probabilistic denotational semantics JO. f | CKp of a S command C, within

a method O. f , transforms a measure µ over the variables in the method into a new

measure µ′, which captures the effect of applying the command C. We will consider

each type of command in turn.

Let us begin with assignment. The deterministic behaviour of such a command

operates on a state of the method’s variables — if there are N variables, X1, . . . ,XN ,

then we can represent this as a vector x ∈RN , where xi records the value of the variable

Xi. An assignment Xi := E transforms this vector, by substituting the value of Xi

with the value that E evaluates to. We can formally write this deterministic semantics

J·K : RN → RN as follows:

JXi := EK(x) = x{JEK(x) / xi }

where the definition of JEK is shown in Figure 3.2. To construct a probabilistic,

rather than a deterministic semantics, we need instead to map between two measures

in B(RN ,M(N)). Specifically, given a measure µ, the new measure on a set X ∈M(N)

should be the original measure applied to the set of states that can lead to states in X

following the assignment:

JO. f | Xi := EKp(µ) = µ◦ JXi := EK−1

The semantics of a sequential composition of two commands is the composition of the

operators on measures given by their semantics:

JO. f |C1 ; C2Kp = JO. f |C2Kp ◦ JO. f |C1Kp
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Figure 3.4: The effect of conditional and probabilistic branching on a measure

To describe the semantics of if-statements, we first need to describe the semantics

of conditions. For a Boolean expression B, we will write JBK to denote the set of

valuations that satisfy B — namely, JBK = { x | JBK(x) = true }. Using the notation µY

to mean µY(Z) = µ(Y ∩ Z), we define eJBK to be a linear operator on measures, such

that eJBK(µ) = µJBK. The intuition behind this is to throw away all the unreachable

environments — that do not satisfy B — before applying the measure µ. The semantics

of an if-statement can now be defined as follows:

JO. f | if B then C1 else C2Kp = JO. f |C1Kp ◦ eJBK+ JO. f |C2Kp ◦ eJ¬BK

This splits the probability mass into two parts, according to the condition, passing each

part down the corresponding branch. It then recombines the two measures, when the

control flow merges, by adding them together.

For a probabilistic pif-statement, we similarly need to define the operation of

the probabilities on the measure. Rather than separating the measure into two parts,

however, its effect is to scale the total weight. This is illustrated in Figure 3.4, where a

measure is shown figuratively as a continuous density function over a single variable.

In both cases, the sum of the measures on each branch is equal to the original measure.

Using the operator eq(µ)(X) = q.µ(X), where q ∈ [0,1] is a probability, the semantics of

probabilistic choice is as follows:

JO. f | pif q then C1 else C2Kp = JO. f |C1Kp ◦ eq+ JO. f |C2Kp ◦ e1−q

The semantics of skip is simply the identity map on measures — λµ.µ— and that of

a return statement occurring in a method O. f is as follows:

JO. f | return EKp(µ) = JO. f | XO. f := EKp
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We will not deal with remote method calls at this moment, and so we only have local

method calls left to consider. In this case, we can perform a direct substitution as

follows, where the called method is associated with the same object O as the callee:

JO. f | Xi := f ′(Xi1 , . . . ,Xin)Kp =

JO. f ′ |C {Xi1/X j1 , . . . ,Xin/X jn ,Xi := E/return E }Kp

where def (O. f ′) = O. f ′(X j1 , . . . ,X jn) {C }. This can be thought of as modifying the

denotation of the body of the method so that its argument variables X j1 , . . . ,X jn are

replaced by the actual arguments Xi1 , . . . ,Xin , and the return call is replaced by a

direct assignment to the variable Xi.

Theorem 3.2.1. For a S command C, occurring in a method O. f containing N vari-

ables, the denotational semantics JO. f |CKp describes a continuous linear operator on

the Banach space (B(RN ,M(N)),‖ · ‖).

Proof: To prove linearity, we need to show that for all measures µ,µ1,µ2 and constants

c ∈ R:

JO. f |CKp(cµ) = cJO. f |CKp(µ)

JO. f |CKp(µ1+µ2) = JO. f |CKp(µ1)+ JO. f |CKp(µ2)

Since the composition of two linear operators is linear, as is the sum of two linear

operators, we just need to show this for the non-trivial base operators: JO. f | Xi := EKp,

eJBK, and eq. In the first case, we have (from the definition of point-wise addition and

scalar multiplication for measures):

JO. f | Xi := EKp(cµ) = (cµ)◦ JXi := EK−1

= c(µ◦ JXi := EK−1)

= cJO. f | Xi := EKp(µ)

JO. f | Xi := EKp(µ1+µ2) = (µ1+µ2)◦ JXi := EK−1

= µ1 ◦ JXi := EK−1+µ2 ◦ JXi := EK−1

= JO. f | Xi := EKp(µ1)+ JO. f | Xi := EKp(µ2)

It is straightforward to show the linearity of eJBK, and eq by similar arguments.

The continuity of the semantics can be shown similarly — the composition and sum

of two continuous functions is continuous, and so we just need to show the continuity

of JO. f | Xi := EKp, eJBK, and eq, which follows trivially from their definitions.

As a small example of the denotational semantics of S, consider the following

method, which has only a single variable X:
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O. f(X) {

if (0.5) then

X := X + 1

else

X := X - 1;

return X

}

Its semantics is given by:

JO. f Kp(µ) = (JO. f | X := X+1Kp ◦ e0.5+ JO. f | X := X−1Kp ◦ e0.5)(µ)

= (JO. f | X := X+1Kp ◦ e0.5)(µ)+ (JO. f | X := X−1Kp ◦ e0.5)(µ)

= JO. f | X := X+1Kp(0.5 µ)+ JO. f | X := X−1Kp(0.5 µ)

= 0.5 µ◦ JX := X+1K−1+0.5 µ◦ JX := X−1K−1

Hence if the initial measure µ gives a uniform distribution over [1,3] of the value of X,

then JO. f Kp(µ) gives a uniform distribution over [0,2] with probability 0.5, and over

[2,4] with probability 0.5, which is the same as a uniform distribution over [0,4].

Since S does not contain loops, this denotational semantics can be considered

a subset of that presented in [112]. For a discussion of how to extend the language

and its semantics with loops, see Appendix A. Note that there are parallels between

this sequential fragment of S and the probabilistic guarded constraint language

(pGCL) [124], except that in the latter, a weakest precondition approach is taken (as

opposed to our strongest postcondition approach), and only discrete distributions are

considered (as opposed to continuous probability measures).

3.3 Probabilistic Semantics of S

The semantics that we just described is a denotational one, and works well for single-

threaded programs. There has been work on denotational semantics for languages with

probabilistic and concurrent features [134], but the problem with such an approach is

that it describes the entire program as a single operator. This means that we lose

information about the structure of the program (e.g. the distribution of computation

into threads), and makes describing non-determinism more complicated. In our case,

we would like to maintain some information about the control flow structure, which

will ultimately enable us to construct compositional performance models from S

programs in the next chapter.
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Historically, operational semantics have been used to describe concurrency, since

the non-determinism of interleaved execution maps directly to non-determinism be-

tween possible transitions in the semantics. In our case, we introduce a probabilis-

tic automaton semantics2, which essentially adds a control-flow graph structure to

Kozen’s semantics. This is a novel approach, in which we combine Kozen’s denota-

tional semantics with an automaton structure. In this section, we define this semantics,

J·Kpa, for the full language S3.

In addition to the linear operators of Kozen’s semantics, we introduce an automaton

for each method in a S program. We will refer to the states of the automaton as

stages, to avoid confusion when we talk about states of the program — essentially, we

use the term stage for a program point (a value of the program counter), and state for

a program point along with a measure over the values of the variables in the program.

A transition between two stages is labelled with a linear operator, which corresponds

to Kozen’s denotational semantics J·Kp over sequential fragments. We only introduce

stages when there is a remote procedure call, and the method we call is recorded as

a label on the stage. Branches due to conditional statements do not require additional

stages, and can be represented using multiple transitions between stages (as opposed

to addition in the denotational semantics J·Kp).

Formally, the semantics of a S program consists of the following elements:

1. A vector X of N distinct variables, X1, . . . ,XN , with X(i) denoting the ith variable.

We use ιX(X) to denote the index of variable X in X, such that X(ιX(X)) = X

holds4.

2. A vector O of M distinct objects, O1, . . . ,OM. These are fixed, in the sense that

there is no creation or deletion of objects.

3. A set of methods, F (Oi), for each object Oi.

4. An automaton JO. f Kpa = (S,T ) for each method O. f . Here, S is a set of stages

(the states of the automaton), and T ⊆ S×O×S is a transition relation, where O

2This is not to be confused with the classical notion of a probabilistic automaton [147], where tran-

sitions are labelled by probabilities. In our case, the transitions are labelled by operators on measures.
3Note that if we were to simplify our semantics to the non-probabilistic case — i.e. where all the

measures are point measures — this would correspond to a deterministic denotational semantics em-

bedded on the control flow graph of the program, in the absence of the probabilistic conditional (pif)

command.
4We introduce the function ιX here for completeness — we do not need to make use of it until

constructing our abstract collecting semantics in the next chapter (Section 4.5).



3.3. Probabilistic Semantics of S 53

is the set of linear operators M : B→ B on measures µ in B(RN ,M(N)). We will

write a transition (s,M, s′) ∈ T as s
M
−−→ s′, for convenience.

We will define the automaton semantics of a method O. f in two parts, as follows:

JO. f Kpa =
(

JO. f KS
pa,JO. f KT

pa

)

If the method is defined such that def (O. f ) = O. f (X1, . . . ,Xn){C }, then the stages and

transitions are as follows:

JO. f KS
pa =

{

�O. f ,�O. f

}

∪ JO. f |CKS
pa

JO. f KT
pa = JO. f |CKT

pa

Here, the stages �O. f and �O. f are the respectively the entry and exit points in the

automaton for the method O. f . We call these external stages. When the method name

is clear from context, we will omit the subscript O. f . Stages s ∈ JO. f |CKS
pa are called

internal stages, and have a label L ∈ {Oi. f | 1 ≤ i ≤ M, f ∈ F (Oi) }. We use the internal

stages to represent calls to other methods (i.e. remote procedure calls), and their label

records the method that is called. We write s[L] for an internal stage s with label L.

Since the variables, objects, and methods in a S program can be easily deter-

mined statically, we will assume in the following that X, O and F are known and fixed.

In particular, this means that we assume that there are no name conflicts between vari-

ables in different methods — a condition easily met by replacing a method with an

alpha-equivalent version.

We can now describe our probabilistic automaton semantics over S commands.

We begin with the skip command, which is trivially the identity map (I = λµ. µ) on

the input measure, and has no internal stages:

JO. f | skipKS
pa = { } JO. f | skipKT

pa = {�
I
−→ � }

For return statements, we need to assign the value of the expression to the correct

return variable — but this assignment is precisely the probabilistic semantics, JO. f |

return EKp. As with skip, no internal stages are added.

JO. f | return EKS
pa = { }

JO. f | return EKT
pa = {�

M
−−→ � } where M = JO. f | return EKp

Basic assignments do not introduce any internal stages, and are denoted by the same

operator as in Kozen’s semantics:

JO. f | Xi := EKS
pa = { }

JO. f | Xi := EKT
pa = {�

M
−−→ � } where M = JXi := EKp



54 Chapter 3. A Language for Distributed Programs with Remote Invocation

The semantics of calling a local method f ′, defined as O. f ′(X j1 , . . . ,X jn) {C }, from

within a method O. f is similar to the probabilistic case — we substitute the argument

variables of the method for the arguments of the call, and actually perform the assign-

ment of the return variable for each return command:

JO. f | Xi := f ′(Xi1 , . . . ,Xin)Kpa =

JO. f ′ |C {Xi1/X j1 , . . . ,Xin/X jn ,Xi := E/return E }Kpa

Sequencing involves composing two automata, so that the exit transitions of the first

are merged with the entry transitions of the second. The resulting linear operator is the

composition of the original operators. If there is more than one start or exit transition,

we must take all possible combinations. Hence in the worst case, the number of tran-

sitions will grow exponentially in the number of branching instructions. Formally, the

semantics is as follows:

JO. f |C1 ; C2K
S
pa = JO. f |C1K

S
pa∪ JO. f |C2K

S
pa

JO. f |C1 ; C2K
T
pa = { s

M2◦M1
−−−−−−→ s′ | s

M1
−−→ � ∈ JO. f |C1K

T
pa∧�

M2
−−→ s′ ∈ JO. f |C2K

T
pa } ∪

{ s
M
−−→ s′ ∈ JO. f |C1K

T
pa | s

′
, � } ∪

{ s
M
−−→ s′ ∈ JO. f |C2K

T
pa | s , � }

For conditional statements, we again employ Kozen’s semantics, except that instead

of adding the measures from each branch, we introduce separate transitions in the

automaton. This has the advantage (from the point of view of our analysis) of limiting

the behaviour of the operators on measures, at the expense of an exponential blow-up

in the number of transitions when there is a sequence of conditional statements.

The semantics of the if- and pif-statements are as follows:

JO. f | if B then C1 else C2K
S
pa = JO. f |C1K

S
pa∪ JO. f |C2K

S
pa

JO. f | if B then C1 else C2K
T
pa = {�

M◦eJBK
−−−−−−→ s | �

M
−−→ s ∈ JO. f |C1K

T
pa } ∪

{ s
M
−−→ s′ ∈ JO. f |C1K

T
pa | s , � } ∪

{�
M◦eJ¬BK
−−−−−−−→ s | �

M
−−→ s ∈ JO. f |C2K

T
pa } ∪

{ s
M
−−→ s′ ∈ JO. f |C2K

T
pa | s , � }

JO. f | pif q then C1 else C2K
S
pa = JO. f |C1K

S
pa∪ JO. f |C2K

S
pa

JO. f | pif q then C1 else C2K
T
pa = {�

M◦eq

−−−−→ s | �
M
−−→ s ∈ JO. f |C1K

T
pa } ∪

{ s
M
−−→ s′ ∈ JO. f |C1K

T
pa | s , � } ∪

{�
M◦e1−q

−−−−−−→ s | �
M
−−→ s ∈ JO. f |C2K

T
pa } ∪

{ s
M
−−→ s′ ∈ JO. f |C2K

T
pa | s , � }
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Finally, we consider the semantics of remote procedure calls. Consider a call to a

method O′. f ′ such that def (O′. f ′)=O′. f ′(X j1 , . . . ,X jn) (i.e. X j1 , . . . ,X jn are the argument

variables of O′. f ′). Then the semantics is as follows, where s∗ is a fresh stage:

JO. f | Xi := O′. f ′(Xi1 , . . . ,Xin)KS
pa = { s∗[O′. f ′] }

JO. f | Xi := O′. f ′(Xi1 , . . . ,Xin)KT
pa = {�

Min
−−−→ s∗[O′. f ′], s∗[O′. f ′]

Mout
−−−→ � }

(3.1)

where Min and Mout perform the copying between the local variables of O. f and the

return and argument variables of O′. f ′:

Min = JX j1 := Xi1Kp ◦ · · · ◦ JX jn := XinKp

Mout = JXi := XO′. f ′Kp

It should be noted that our probabilistic automaton semantics of S is not fully ab-

stract, in the sense of two programs that are observably equivalent having the same

semantics. As an example, consider a program that consists of two syntactically iden-

tical methods, O1. f1 and O1. f2, and a third method O2. f that calls both of them sequen-

tially. Behaviourally, the program is the same as one where O2. f calls O1. f1 twice, but

the probabilistic automaton semantics differ, because the labels of the stages will be

different.

3.3.1 An Example of the Automaton Semantics of S

Figure 3.5 shows the concrete semantics of the Client.buy method from Figure 3.1,

as an example. The program is repeated alongside its semantics, with the variables

shortened for brevity — quantity becoming Q, cost becoming C, and so forth.

There are two internal stages, corresponding to the two remote procedure calls. We

use argS .P and argS .B in place of the actual argument variables of Server.getPrice

and Server.buy respectively. The return variables are XC.B, XS .P, and XS .B for

Client.buy, Server.getPrice, and Server.buy respectively.

To “execute” a method’s probabilistic automaton semantics, we need to supply the

initial measure over its variables — that is to say, all of its variables and not just its

arguments. A sensible approach is to initialise all the non-arguments to the point mea-

sure zero. But what does an execution of a method actually look like in this semantics?

And more importantly, how do we handle the distributed nature of the objects, which

can be thought of as running in parallel? We will answer these questions by defining a

probabilistic interpretation of our semantics.
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Client.buy(Q, C) {

P := Server.getPrice(Q);

if (P ≤C) then

S := Server.buy(Q);

if (S = 1) then

C := C−P;

return C

}

Figure 3.5: Concrete semantics of the Client.buy method from Figure 3.1

3.4 Probabilistic Interpretation of S

The probabilistic automaton semantics encapsulates a program’s behaviour under any

input measure, but if we execute the program given a particular input measure, we

expect to see a particular probabilistic behaviour. When a stage in the probabilistic

automaton has multiple outgoing transitions, we can envisage the measure splitting

apart and flowing down each transition simultaneously. There is uncertainty about

which transition to take due to uncertainty about the values of the variables.

Let us consider a S method O. f that contains no remote procedure calls. For

each stage s ∈ JO. f KS
pa, there are a number of transitions of the form s

M
−−→ s′ that can

be taken from it. For a particular transition s
M
−−→ s′, and a particular starting measure

µ, the probability of moving to s′ is given by:

p =
(M(µ))(RN)

µ(RN)

In other words, the probability is the ratio between the total weight before and after

taking the transition. This result depends on the particular semantics for S that we

presented in the previous section — if we were to allow arbitrary measure operators M

on transitions, it would not necessarily hold. Our semantics ensures this because the

transitions out of a stage preserve the total weight of the measure that entered it. This

is stated more formally in the following theorem.

Theorem 3.4.1. For every stage s ∈ JO. f KS
pa in the probabilistic automaton semantics

of a Smethod O. f , and every measure µ ∈ B(RN ,M(N)), the following conservation
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law holds:
∑

{ s1

M
−−→s2∈JO. f KT

pa | s1=s }

(M(µ))(RN) = µ(RN)

Furthermore, the set { s1
M
−−→ s2 ∈ JO. f KT

pa | s1 = s } is finite.

To prove this, we first need to establish the following two lemmas:

Lemma 3.4.2. For all measures µ ∈ B(RN ,M(N)), and all S arithmetic expressions

E:

JO. f | Xi := EKp(µ)(RN) = µ(RN)

Proof: Let us write JXi := EKp in place of JO. f | Xi := EKp, as the method name

is unimportant in this context. Since JXi := EK is a total function, its domain is pre-

cisely RN . Hence the codomain of JXi := EK−1 is also RN , which means that JXi :=

EK−1(RN) = RN . It follows that JXi := EKp(µ)(RN) = µ◦ JXi := EK−1(RN) = µ(RN).

Lemma 3.4.3. For all measures µ ∈ B(RN ,M(N)), and all S Boolean expressions

B and probabilities q ∈ [0,1]:

eJBK(µ)(R
N)+ eJ¬BK(µ)(R

N) = µ(RN)

eq(µ)(RN)+ e1−q(µ)(RN) = µ(RN)

Proof: The first case can be proven by the following argument:

eJBK(µ)(R
N)+ eJ¬BK(µ)(R

N) = µ(JBK∩RN)+µ(J¬BK∩RN)

= µ(JBK∩RN)+µ(JBKC ∩RN)

= µ((JBK∩RN)∪ (JBKC ∩RN))

= µ(RN)

where JBKC is the complement of the set JBK. The second case follows trivially from

the definition of eq.

Proof: [Theorem 3.4.1] The proof proceeds by structural induction on the body of

O. f . In the base cases of skip, return, assignment, and remote procedure calls, only

stages with a single outgoing transition are introduced, and such a transition is labelled

with either the identity map or an assignment map JXi := EKp. In the former, the total

weight of the measure is trivially preserved, and in the latter, it is preserved due to

Lemma 3.4.2. There are two inductive cases:

1. In the case of a sequential composition ‘C1 ; C2’, we combine the two sets of

transitions JO. f | C1K
T
pa and JO. f | C2K

T
pa. We will consider just two subsets,
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T1 = { si

Mi
−−→ � | 1 ≤ i ≤ n } ⊆ JO. f | C1K

T
pa and T2 = {�

M j

−−→ s′
j
| 1 ≤ j ≤ m } ⊆

JO. f |C2K
T
pa, since most of the transitions remain unchanged when we compose

the two automata. The semantics of sequential composition results in a new set

of transitions T ′ = { si

M j◦Mi

−−−−−→ s′
j
| 1 ≤ i ≤ n,1 ≤ j ≤m } ⊆ JO. f |C1 ; C2K

T
pa. Given

that the transitions in JO. f | C1K
T
pa and JO. f | C2K

T
pa preserve the total weight

by the induction hypothesis, we can show the following for each stage s for

which there is a transition in T1, where we omit the method name O. f , and write

{ s
M
−−→ s2 ∈ T } as shorthand for { s1

M
−−→ s2 ∈ T | s1 = s }:

∑

{ s
M

−−→s2∈JC1 ; C2K
T
pa }

(M(µ))(RN)

=
∑

{ s
M

−−→s2∈JC1 ; C2K
T
pa\T

′ }

(M(µ))(RN)+
∑

{ s
M

−−→s2∈T ′ }

(M(µ))(RN)

=
∑

{ s
M

−−→s2∈JC1K
T
pa | s2,� }

(M(µ))(RN)+
∑

{ s
M

−−→�∈T1 }

∑

{�
M′

−−→s2∈T2 }

(M′ ◦M(µ))(RN)

=
∑

{ s
M

−−→s2∈JC1K
T
pa | s2,� }

(M(µ))(RN)+
∑

{ s
M

−−→�∈T1 }

(M(µ))(RN)

=
∑

{ s
M

−−→s2∈JC1K
T
pa }

(M(µ))(RN)

= µ(RN)

If a stage does not have a transition in T1, its transitions are unmodified in

JO. f | C1 ; C2K
T
pa. Hence sequential composition preserves the total weight of a

measure.

2. For conditional branching, we take each existing transition out of a stage s, and

replace it with two new transitions s
M1◦M
−−−−−→ s′

1
and s

M2◦M
−−−−−→ s′

2
, where M1 and

M2 are of the form eJBK and eJ¬BK respectively, or else are eq and e1−q. Since, by

Lemma 3.4.3, M1(M(µ))(RN)+M2(M(µ))(RN) = M(µ)(RN), the new transitions

preserve the total weight of the original measure.

Formally, the probabilistic interpretation of a S program is an acyclic DTMC, in-

duced by a transition system over states of the form µ ⊢ s. If we consider a single

method O. f , s ∈ JO. f KS
pa is a stage in its automaton, and µ ∈ B(RN ,M(N)) is a measure

over the state of its variables. If O. f contains no remote procedure calls, its probabilis-

tic transition system is defined as follows:

µ ⊢ s
p
−→ µ′ ⊢ s′ iff s

M
−−→ s′ ∈ JO. f KT

pa∧µ
′ = M(µ) (3.2)
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where p =
(M(µ))(RN)

µ(RN )
. Theorem 3.4.1 ensures that the probabilities of the transitions

out of a state µ ⊢ s sum to one. The interpretation JO. f Kpa(µ) is the probabilistic graph

induced by µ ⊢ �O. f .

Of course, we are really interested in the behaviour of multi-threaded systems, in

which remote procedure calls occur. In this case all of the objects in the S program

exist in parallel5, with the ability to invoke one another’s methods. Recall that an

instantiation of a program is a call to a particular method O. f (X1, . . . ,Xn). Since we

want a probabilistic interpretation, we need to provide an initial probability measure µI

that gives the distribution of the inputs X1, . . . ,Xn (we will worry about how to actually

specify such a measure in the next chapter).

Consider the following system, in which we can think of all the methods of all the

objects in a S program running in parallel:

O1. f1 ‖ · · · ‖ O1. fn1
‖ · · · ‖ OM. f1 ‖ · · · ‖ OM. fnM

(3.3)

Initially, only the instantiated method O. f is actively executing, and the others are

inactive. When a remote procedure call takes place, O. f blocks and another method

is activated. Importantly, only one method is ever active in our system at any one

time, in the sense that all other methods must be either blocked or not instantiated. In

other words, there is a single thread of execution, which transfers control to different

methods by remote invocation.

Note that from a performance analysis point of view, we are more interested in the

case when many methods are executing at the same time, and there is contention for

resources — for example, if there are many clients that want to communicate with a

server at the same time. We will look at this sort of problem in more detail in the next

chapter, when we show how to construct PEPA models from S programs. For now,

however, we should bear in mind that each object represents a single resource. By

placing all its methods in parallel, we do not mean that they can be called at the same

time — we are merely using this structure to interpret the probabilistic behaviour of

the system. Another way to think about it is that we are analysing the system from the

perspective of an individual user, and we will later combine such analyses to build a

performance model of the system with multiple users.

There are two levels at which we can construct our probabilistic interpretation:

5Recall that objects are static entities that correspond to resources, or locations. Objects are neither

created nor destroyed — they exist for the entire lifetime of the program. The methods of an object,

however, must be invoked in order to execute.
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1. As a discrete time interpretation, where we consider only the probabilistic be-

haviour of the system. From this we can construct a discrete time Markov chain

(DTMC). We will describe this in Section 3.4.1.

2. As a continuous time interpretation, where events such as remote procedure calls

also have a duration. If the durations of transitions are exponentially distributed,

this leads to a continuous time Markov chain (CTMC). We will describe this in

Section 3.4.2.

3.4.1 Discrete Time Interpretation

If we have no information about how long it takes for instructions to execute and

remote objects to be invoked, we can construct a time-abstract interpretation of a S

program — we can determine the probability of evolving to a new state, but not how

long it takes for this to happen. States in the interpretation are of the form µ ⊢ s1,1 ‖ · · · ‖

sM,nM
, where for every method Oi. f j of every object, si, j denotes the current stage in

the method’s probabilistic automaton semantics — i.e. si, j ∈ JOi. f jK
S
pa. If we instantiate

the program with a call to the method Oi. f j, and the initial measure over the variables

is µI , then the initial state in the probabilistic interpretation is:

µI ⊢ �O1. f1 ‖ · · · ‖ �Oi. f j−1
‖ �Oi. f j

‖ �Oi. f j+1
‖ · · · ‖ �OM . fnM

(3.4)

In other words, all methods begin in state � except for the method we instantiate, Oi. f j,

which starts in state �.

The transitions out of each state µ ⊢ s1,1 ‖ · · · ‖ sM,nM
are as follows, and are labelled

with a probability p:

µ ⊢ s1,1 ‖ · · · ‖ si, j ‖ · · · ‖ sM,nM

p
−→ µ′ ⊢ s1,1 ‖ · · · ‖ �Oi. f j

‖ · · · ‖ sM,nM

iff µ ⊢ si, j
p
−→ µ′ ⊢ �Oi. f j

∧¬blocked(si, j) (3.5)

µ ⊢ s1,1 ‖ · · · ‖ si, j ‖ · · · ‖ si′, j′ ‖ · · · ‖ sM,nM

p
−→ µ′ ⊢ s1,1 ‖ · · · ‖ s′i, j ‖ · · · ‖�Oi′. f j′

‖ · · · ‖ sM,nM

iff µ ⊢ si, j
p
−→ µ′ ⊢ s′i, j∧ s′i, j = s[Oi′. f j′]∧¬blocked(si, j) (3.6)

Here, the first case corresponds to returning from a remote procedure call (i.e. entering

the � stage), and the second corresponds to invoking such a call (i.e. causing another

method to enter its � stage). For this to make sense, we initially require that all methods



3.4. Probabilistic Interpretation of S 61

except the one invoked are in the � stage. Vitally, we use the predicate blocked(si, j) to

describe when a method is unable to execute:

blocked(si, j) iff si, j = �Oi. f j
∨ (si, j = s[Oi′. f j′]∧ si′, j′ , �Oi′. f j′

) (3.7)

Informally, a method is in a blocked stage if it has finished executing (i.e. it is in its �

stage), or it is in the middle of a remote procedure call (i.e. the method it is calling is

not in its � stage).

For the interpretation to give rise to a DTMC, starting in the initial state shown

in Equation 3.4, we need to ensure that only one method is enabled at a time. If this

were not the case, the sum of the probabilities on the transitions out of each state might

be greater than one, and would not describe a probability distribution. This singular

enabling of methods is given by the following theorem:

Theorem 3.4.4. Starting in a state µ ⊢ s1,1 ‖ · · · ‖ sM,nM
where ¬blocked(si, j) holds of

precisely one si, j, it is not possible to reach a state in which ¬blocked(si, j) holds of

more than one si, j.

Proof: The proof follows from the definition of
p
−→. In the first case, we finish exe-

cuting a method, entering the � stage so that it becomes blocked. This causes at most

one other method to become unblocked — otherwise, this would mean that we were

called by more than one method, which is not possible in the absence of recursion. In

the second case, we invoke a remote procedure call, thus unblocking one method but

in the process becoming blocked ourselves. Hence the number of blocked methods in

the system is unchanged.

3.4.2 Continuous Time Interpretation

If we are to analyse the performance of a S program, it is essential to have a less ab-

stract notion of time. This is not an inherent property of the program, since it depends

entirely on the execution architecture and the characteristics of the network. Because

of this, we will introduce timing information at the semantic level, in that we use a ran-

dom variable to describe the time taken to perform each ‘operation’. In our context, an

operation is either an internal sequence of computations, corresponding to a transition

in the probabilistic automaton, or the invocation of a remote procedure call.

There are various granularities at which we could choose to define the duration of

operations, but to simplify our presentation we will assign just two random variables to

each object O — one corresponding to internal operations, and the other corresponding
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to network communication. Furthermore, in order to generate a Markov chain, we

will consider only exponentially distributed random variables X ∼ Exp(r) — namely,

Pr(X < t) = 1−e−rt for all times t. This means that we can represent X by its parameter

r as follows:

• RI(O) ∈ R+ is the internal rate of the object O.

• RE(O) ∈ R+ is the external rate of the object O.

This assumption of an exponential distribution is important if we are to construct a

feasible analysis of the performance of a S program. In essence, it allows us to

correctly capture the mean duration of an operation, but not its variance, and so should

be seen as an approximation. We could extend our technique to deal with general

distributions, but this would not result in a Markov chain, and so we would have to

resort to simulation as an analyse technique.

For a method O. f that contains no remote procedure calls, our continuous time

interpretation results in a rate-labelled transition system as follows:

µ ⊢ s
r
−→ µ′ ⊢ s′ iff µ ⊢ s

p
−→ µ′ ⊢ s′∧ r = p.RI(O)

In this case, only the internal rate of the method is needed, but we need to be a little

more careful when there are remote procedure calls.

Consider a system S = s1,1 ‖ · · · ‖ sM,nM
. We can observe from the definition of

p
−→

that whenever µ ⊢ S
p
−→ µ′ ⊢ S ′, this corresponds either to invoking a remote procedure

call or returning from one. The operation leading to this call or return is internal, but

it is followed by some communication over the network. We therefore need to include

the external rate in our rate-labelled transition system:

µ ⊢ s1,1 ‖ · · · ‖ si, j ‖ · · · ‖ sM,nM

r
−→ µ′ ⊢ s1,1 ‖ · · · ‖ �Oi. f j

‖ · · · ‖ sM,nM

iff µ ⊢ si, j
p
−→ µ′ ⊢ �Oi. f j

∧¬blocked(si, j)∧ r = p.((RI(Oi))
−1+ (RE(Oi))

−1)−1 (3.8)

µ ⊢ s1,1 ‖ · · · ‖ si, j ‖ · · · ‖ si′, j′ ‖ · · · ‖ sM,nM

r
−→ µ′ ⊢ s1,1 ‖ · · · ‖ s′i, j ‖ · · · ‖�Oi′. f j′

‖ · · · ‖ sM,nM

iff µ ⊢ si, j
p
−→ µ′ ⊢ s′i, j∧ s′i, j = s[Oi′. f j′]∧¬blocked(si, j)∧r= p.((RI(Oi))

−1+(RE(Oi′))
−1)−1

(3.9)

The value of the rate r is calculated as the probability of the transition, divided by the

expected duration of the transition (which is the sum of the inverses of the internal

and external rates). This is technically an approximation, since the convolution of
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two exponentials is not itself exponentially distributed. However, since we are already

making an approximation by saying that all delays are exponentially distributed, this

is a reasonable thing to do. Note that if we initially invoke the method O. f , we may

want to set RE(O) = 0 to mean that there is no communication delay between the user

and the object O (i.e. the object O corresponds to the user’s personal computer).

In this interpretation, we have collapsed internal and external operations into a sin-

gle transition. When we want to model systems with multiple invocations, however,

it is not always the case that the external operation can take place immediately — a

server might be engaged with another client, for example. In the next chapter, we will

show how to resolve this by mapping onto a PEPA model — we can use the seman-

tics of cooperation in PEPA to ensure that the client blocks until the server becomes

available.

3.5 Collecting Semantics of S

Recall that the ultimate aim of our semantics is to generate a performance model of

a S program. In the continuous time interpretation that we have just seen, we as-

sociate rates with various operations so that we generate a CTMC. This is guaranteed

to be finite, since there are no loops or recursive method calls in S. However, the

state space might be very large, and more importantly, we lose the thread-level com-

positionality of the original S program. We can regain this however, to generate a

compositional performance model, by means of a collecting semantics over the proba-

bilistic interpretation.

One way to approach this is to consider a single method Oi. f j — this could be

invoked from several places in the interpretation, corresponding to different paths in

the probabilistic automaton of the caller. If we consider a stage s ∈ JOi. f jK
S
pa, there

might be multiple states of the form µ ⊢ s1,1 ‖ · · · ‖ si, j ‖ · · · ‖ sM,nM
, such that si, j = s,

which correspond to being in this particular stage of Oi. f j. If we just want to describe

the behaviour of Oi. f j, we could “project” each state in the interpretation, so that it

only refers to its local stages. In other words, we can define an operator πOi. f j
such

that:

πOi. f j
(µ ⊢ s1,1 ‖ · · · ‖ si, j ‖ · · · ‖ sM,nM

) = µ ⊢ si, j

This would then induce a projected transition system. The problem, however, is that it

still includes transitions between the same stage that correspond to a different method
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executing. As an example, we might have the following sequence of transitions:

µ ⊢ s→ µ′ ⊢ s→ µ′′ ⊢ s′

The measure µ is altered during the first transition by an external method because

it contains information about all the variables in the system, and not just those that

occur in Oi. f j. To avoid this, we could try to project the measures themselves, so that

they only describe the variables in Oi. f j. The above transitions would then become as

follows:

πOi. f j
(µ) ⊢ s→ πOi. f j

(µ′) ⊢ s→ πOi. f j
(µ′′) ⊢ s′

Since a method only modifies its local variables, πOi. f j
(µ) = πOi. f j

(µ′) — meaning

that we introduce a non-deterministic choice between the transitions out of the state

πOi. f j
(µ) ⊢ s. This is due to us throwing away information about the environment —

namely, the other methods — when we project onto a particular method of the system.

We could resolve this non-determinism by allowing the projected interpretations to be

driven by one another. This is an idea that we will follow in detail in the next chapter,

and more specifically in Section 4.5, when we show how to construct a PEPA model

from the probabilistic interpretation of a S program.

The reader may at this point be wondering why we do not define such a collecting

semantics here. The reason is that our probabilistic interpretation assumes that we

have the ability to represent and manipulate arbitrary measures. In other words, it is not

computable in general, so it is meaningless to define a collecting semantics on top of it.

Even if we start with an initial measure that is compactly representable, the operations

of the program will in general lead to one that is not. In the next chapter, we will solve

this problem by building an abstraction of the semantics that over-approximates the

behaviour of a program — but with the benefit that the analysis is computable, and the

measures are efficiently representable. As a consequence, it will then be possible to

extract a PEPA model from a S program.



Chapter 4

Stochastic Abstraction of Programs

In the previous chapter, we introduced the Simple Imperative Remote Invocation Lan-

guage (S), and described its semantics in terms of probabilistic automata. The

interpretation of this semantics results in a finite acyclic Markov chain, but this is not

a feasible approach to generating a performance model in practice, for reasons that we

will outline below. In this chapter, we will develop an abstract interpretation of S,

which will allow us to feasibly generate performance models from S programs.

There are two main problems with our concrete semantics and probabilistic inter-

pretation, for which we need to take additional steps to address:

1. The concrete semantics allows general measures over the state of a program’s

variables. There are two issues with this. Firstly, we need to be able to compactly

describe a measure, if we want to efficiently execute the probabilistic interpre-

tation — this is certainly not the case for measures in general. Secondly, when

we operate on a measure (i.e. following the semantics of a S program), we

also need to describe the resulting measure compactly1. We address these is-

sues by restricting the possible measures to a particular form — the truncated

multivariate normal measures — which can be represented and operated on effi-

ciently. This leads to an abstract interpretation that over-approximates the con-

crete probabilistic interpretation. Crucially, the measures in the abstract interpre-

tation will not in general be probability measures, since they over-approximate

the probabilities in the concrete interpretation.

1As an example of how this might not be the case, consider an arithmetic expression X1+X2, where

X1 is normally distributed, and X2 is uniformly distributed over some interval. We can compactly

represent the probability measures for both X1 and X2, but there is no compact representation for the

sum of these measures.

65
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2. The interpretation (both concrete and abstract) of a S program is not com-

positional. This means that we generate a single large Markov chain describing

the whole system, which restricts the types of analysis we can perform. To com-

bat this, we will introduce a collecting semantics that re-introduces thread-level

compositionality, allowing us to construct a PEPA model of the system. From

this, a wider range of tool support is available, and model-level transformations

are easier.

The important point about the approach that we will describe in this chapter is that it is

safe — any trace is at least as likely to happen in the abstract system as in the concrete

system (we will formally define what we mean by this in Section 4.1). In addressing

the first point, we can use our abstract interpretation to obtain an upper bound on the

actual probability of a particular trace, or execution, of the program. For the second

point, the collecting semantics allows us to construct a compositional performance

model, without changing the underlying Markov chain that is described.

Note that there is an additional approximation inherent when we use a continuous

time Markovian interpretation. By associating rates to the internal and external op-

erations of a method, we are assuming that the time taken to perform each operation

is exponentially distributed (and therefore history-independent). This approximation

is necessary to make our performance analysis feasible, although the granularity at

which we specify the rates is a design decision. With only minor modifications to

our technique we might instead, for example, associate a different internal rate to each

transition in a method’s probabilistic automaton.

In this chapter, we will begin by introducing abstract interpretation as a framework

for program analysis in Section 4.1. In Section 4.2, we show how this can be applied

to S programs, by developing an abstract domain for probability measures based on

the truncated multivariate normal distribution. Bringing this all together, we present

an abstract semantics, abstract interpretation, and collecting semantics for S in Sec-

tions 4.3, 4.4 and 4.5 respectively. This follows the same pattern as the concrete case,

except that we construct a compositional PEPA model of the program, rather than a

Markov chain. We use the client-server example from the previous chapter as a run-

ning example.

An overview of this analysis framework is shown in Figure 4.1. Note that we have

a safety relation between the concrete and abstract interpretations, which ensures the

correctness of our analysis. Just like the concrete semantics of the previous chapter,

there are three stages to deriving an abstract performance model of a program:
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Figure 4.1: Overview of our probabilistic abstract interpretation

1. Abstract semantics [Section 4.3] — we compute an abstract probabilistic au-

tomaton that is a safe approximation of the concrete semantics of the program. In

other words, we satisfy the relational homomorphism property (Definition 4.1.1).

2. Abstract interpretation [Section 4.4] — we “execute” the abstract automaton

with a particular input measure. This generates a labelled transition system

(which can be thought of as a set of traces) that safely approximates the con-

crete one, in that the measure associated with each state bounds that of the cor-

responding state in the concrete interpretation.

3. Abstract collecting semantics [Section 4.5] — for each method in the S pro-

gram, we project the transitions in the abstract interpretation onto its local state

space. By labelling these projected transitions with input and output measures

(corresponding to receiving and sending arguments and return values), we can

map onto a PEPA component describing the method — where input and output

measures map onto action types. In Section 4.6, we will additionally consider

model-level constructions of more complex instantiations — for example, hav-

ing multiple methods that are initially invoked, or repeatedly invoking a method

so that we can reason about steady state behaviour.
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After developing this framework, we will then, in Section 4.6, look at some model-

level transformations, such as instantiating a program with multiple clients initiating

requests in parallel. Finally, we conclude in Section 4.7 with a discussion of how

to modify our approach to produce performance models with non-determinism. This

provides a link to the ideas of abstracting Markov chains in Chapter 5.

4.1 Program Analysis and Abstract Interpretation

Of the many techniques available for formally analysing programs, four of the main

approaches are data flow analysis, control flow analysis, abstract interpretation, and

type and effect systems [133]. Whilst all of these are widely used to analyse qualitative

properties of programs, there have been relatively few applications to probabilistic

and stochastic analyses. Most of the work that has been done in this regard involves

probabilistic extensions to abstract interpretation [128, 141].

If we consider our goal of deriving a performance model from program code, we

need to develop a suitable program analysis technique. More specifically, we need a

program analysis for S programs, whose output is a probabilistic abstraction of

the program2. To do this, we need to gather information about the possible values

of the variables at each program point (i.e. a value of the program counter), so that

we can reason about the probability of taking each control flow branch. The most

natural choices of techniques to use are are data flow analysis, in which we gather a

set of possible values for each node in the program’s control flow graph, and abstract

interpretation, in which we execute the program using an abstract domain of values.

These two techniques essentially do the same thing, but from different perspec-

tives. In data flow analysis, the program is viewed as a static object (usually graph-

structured), on which we annotate information. Abstract interpretation, on the other

hand, views the program as a dynamic entity that is executed, and then outputs the de-

sired information. In both cases, this ‘information’ is represented in a partially ordered

abstract domain that exhibits two properties:

1. Every operation in the abstract domain safely approximates its counterpart in

the concrete domain. This means that any value we obtain from a sequence of

operations in the abstract domain over-approximates the actual, concrete value.

2The concrete semantics of Section 3.3 is probabilistic, and we only move to the stochastic domain

by using the continuous time Markovian interpretation (described in Section 3.4.2), which adds timing

information.
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2. Any infinite sequence of operations on an element in the abstract domain will

converge. This is achieved by ensuring two conditions — that the operations are

monotone (i.e. they lead to ever increasing values in the abstract domain), and

that the abstract domain has a finite height (i.e. there are no infinite ascending

chains in the partially ordered set). This ensures termination of the analysis.

In the case of S, however, only the first of these properties is essential, since ter-

mination of the analysis is guaranteed in the absence of loops (see Appendix A for a

discussion of how to deal with looping behaviour in S).

We choose to use abstract interpretation as our analysis framework because it is

notationally more general than data flow analysis, which has historically been used

only for particular program analyses. There is no reason why we cannot formulate our

approach using data flow analysis, but we believe that this would lead to a less natural

presentation3. In the remainder of this chapter, we will therefore focus our attention

on abstract interpretation.

Classical abstract interpretation [50] is a mathematical framework that relates a

concrete domain to an abstract one. Properties in the abstract domain are safe approx-

imations (supersets) of their concrete counterparts. By constructing a suitable abstract

domain and abstract semantics, we can reason about properties of a program that are

in general undecidable — for example, the possible values that a variable can take

throughout the program’s execution — by not being precise in all cases.

Abstract interpretation can be applied to many different semantic frameworks, but

since we are working with a transition system style of semantics, we will describe it

just in this setting. Consider two partially ordered sets, a concrete domain (X,≤) and an

abstract domain (X♯,≤♯). To relate these two domains, we have an abstraction function,

α : X→ X♯, and a concretisation function, γ : X♯→ X. A safe abstraction will be one

that satisfies, for all x ∈ X, x ≤ γ(α(x)). If X♯ ⊂ X, we can let the concretisation function

be the identity map so that we can concentrate solely on the definition of α.

The usefulness of this framework comes when we apply it to our transition seman-

tics. If a state x ∈ X (i.e. a valuation of variables) holds at a stage s (i.e. a program

point), then we can write the statement x ⊢ s. The concrete semantics induces a tran-

sition relation → between such statements. We then say that an abstract semantics,

inducing→♯ for x♯ ∈ X♯, is safe if the following holds [157]:

3Note that the choice between data flow analysis and abstract interpretation has no impact on our

inability to deal with loops.
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Definition 4.1.1. A concrete and an abstract transition relation,→ and→♯, satisfy the

relational homomorphism property if x1 ⊢ s1→ x2 ⊢ s2 and α(x1) ≤♯ x
♯
1

imply that there

is an abstract transition x
♯
1
⊢ s1→

♯ x
♯
2
⊢ s2 such that α(x2) ≤♯ x

♯
2
.

Intuitively, this means that if we start with an over-approximation of a property at an

initial stage in the automaton, then the property at every stage in the abstract interpreta-

tion is guaranteed to over-approximate that of the corresponding stage in the concrete

probabilistic interpretation. This is also known as a subject reduction result.

A very common way of constructing an abstract interpretation is to find a pair of

monotone functions α and γ that form a Galois connection [50]. To do this, we need a

notion of ‘best’ approximation, which does not always exist, and indeed does not exist

for our domains4. This has the advantage of telling us how to construct our abstract

semantics, as opposed to constructing it first and then proving that it is safe.

In the probabilistic setting, our domains are Banach spaces rather than preordered

sets, but abstract interpretation can still be applied. This was first done by Monni-

aux [128], where measures are ordered by their total weight. In this way, distributions

can be piece-wise compared by discretising them into point measures (for an intu-

ition, think of the midpoint rule for numerical integration). Since in our case, we will

be considering a particular class of measures, however, and we want a finer-grained

distinction between them, we will use a stronger comparison. We call this the strict

ordering on measures:

Definition 4.1.2. Two measures µ and µ′ over the same measurable space (X,σX) are

comparable under the strict ordering on measures, denoted µ ≤str µ
′, if:

∀x ∈ σX. µ(x) ≤ µ′(x)

Our motivation for this ordering is that it allows the measures on any set to be com-

pared. For example, we can compare the probability of taking a control-flow decision

by looking at the measure on the set of values that satisfy the condition. Note that

any measure that over-approximates a probability measure (other than itself) will be a

super-probability measure — whatever probability the abstraction gives, we will know

that the actual probability is less than or equal to this, and can never be greater.

An alternative approach taken by Di Pierro, Wiklicky et al. [141, 140] is to look

for a probabilistic analogue of the Galois connection. This, the Moore-Penrose pseudo

4Intuitively, this is because we use normal (Gaussian) measures in our abstract domain, as we shall

see in Section 4.2. Since we can vary both the mean and variance, we cannot construct a unique ‘best’

abstraction for a given measure.
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inverse, gives the closest approximation to the inverse of a function, leading to a prob-

abilistic notion of safety. While this approach has had much success, it is difficult to

use in practice for infinite Banach spaces (i.e. continuous measures) such as the ones

we consider, as we would need to construct a finite representation of the abstraction

and concretisation functions.

4.2 Abstraction of S Programs

In the concrete semantics of S that we presented in Section 3.3, we allowed any

probability measure over the state of a program’s variables. In a practical sense, how-

ever, it is infeasible to deal with general distributions, since we need to be able to

represent them somehow. Rather than taking the approach by Monniaux [128] — of

discretising the distributions — we will look for a suitable class of continuous distri-

butions that are easily parameterised, and can be efficiently manipulated in the abstract

domain.

Such a class of distributions are the multivariate normal distributions [176], and

more generally the truncated multivariate normal distributions. The appeal of normal

distributions is that they are closed under linear operations (i.e. addition, subtraction,

and multiplication by a constant), and are commonly observed in practice, due to the

central limit theorem. By using a multivariate distribution, we can record the depen-

dencies between variables in a compact way. Truncations can be used to represent

control-flow constraints, which restrict the range of values that the variables can take.

It is important to remember that these are measures, and not distributions in gen-

eral. Since we over-approximate the measures in the concrete domain, it is possible for

the total weight to be greater than one, and when we truncate a measure, we eliminate

part of the probability mass so that its total weight is less than one. It is always possible

to normalise a non-zero, finite measure µ to a probability measure by multiplying it by

a constant factor 1
µT

, where µT is the total weight of µ. If µ is a measure over (X,σX),

this means that there is a probability measure µ′ over (X,σX) such that for all Y ∈ σX,

µ(Y) = µTµ
′(Y).

A more convenient way of describing many measures, is to do so in terms of a

density function. For a measure µ over (X,σX), we say that it has a density function

f : X→ R≥0 if for all Y ∈ σX:

µ(Y) =

∫

Y

f dm∗ =

∫

Y

f (y) dm∗(y)



72 Chapter 4. Stochastic Abstraction of Programs

which is the Lebesgue integral of f over the measurable set Y , with respect to the

Lebesgue measure m∗ [42] (see Section 3.2). In the following, we define a measure in

terms of its density function, using the above equation:

Definition 4.2.1. A multivariate normal measure, µ, which we write as µT NN(µ,Σ), is

a measure over (RN ,M(N)) with the following density function (for x ∈ RN):

f (x) =
µT

|Σ|
1
2 (2π)

N
2

e−
1
2 (x−µ)T

Σ
−1(x−µ)

where N is the number of variables, µ is the mean vector of length N, and Σ is the N×N

covariance matrix. Note that MT denotes the matrix transpose of M. Considering
µ
µT

as the joint distribution of values of a vector X of N variables, the elements of Σ are

such that Σ(i, i) = Var(X(i)), and Σ(i, j) = Cov(X(i),X( j)) = Σ( j, i).

It is unfortunate that the Greek letter µ is conventionally used for both measures and

means, however since we are dealing with multivariate distributions, we will from

hereon always use boldface µ to refer to the mean, and lightface µ for measures.

In order to allow truncated multivariate normal measures, we define a truncation

function T [a, b] over measures:

Definition 4.2.2. The truncation function T [a, b], where a and b are column vectors

of length N, is defined over measures µ over (RN ,M(N)), such that (for X ∈M(N)):

T [a, b](µ)(X) = µ(X∩{ x ∈ RN | a ≤ x ≤ b })

The elements of a and b are from the set R∪ {⊥,⊤}, where ∀x ∈ R. ⊥ < x < ⊤. The

ordering on column vectors is such that x ≤ y iff xi ≤ yi for all 1 ≤ i ≤ n.

Intuitively, the truncation T [a, b] confines measures to the rectangular region [a, b],

such that the measure of any set outside this region is zero. We can now define the class

of truncated multivariate normal measures:

Definition 4.2.3. A measure µ is a truncated multivariate normal measure if it can be

written in the form T [a, b]µT NN(µ,Σ). If µT = 1 — i.e. we had a probability measure

before performing the truncation — then we will write µ = T [a, b]NN(µ,Σ).

Before we describe our abstraction function α and our abstract semantics, let us

recall an important property of the multivariate normal distribution. For a multivariate

normally distributed vector of random variables X ∼ NN(µ,Σ), if we apply a linear
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operation λX. BX+ c, where B is an N ×N matrix and c is a column vector of size N,

the following standard result [176] holds:

Y = BX+ c ∼ NN(Bµ+ c,BΣBT )

So that we can directly talk about an operation on measures, rather than on random

variables, we introduce the operator L[B, c], which is defined as follows:

Definition 4.2.4. The linear operator function L[B, c], where B is an N ×N matrix

and c is a column vector of length N, is defined over measures µ over (RN ,M(N)), such

that (for X ∈M(N)):

L[B, c](µ)(X) = µ({ x | Bx+ c ∈ X })

A consequence from the standard properties of multivariate normal distributions is

that if µ = µT NN(µ,Σ) then L[B, c](µ) = µT NN(Bµ+ c,BΣBT ).

Note that our use of the term ‘linear’ in this context is more specific than the usual

definition of a linear operator over measures — namely that an operator M is linear if,

for all c ∈ R, M(cµ) = cM(µ) and M(µ1+µ2) = M(µ1)+M(µ2). Our operator is linear

in this sense, but its name comes from the fact that it represents a linear update to the

program’s variables. A consequence is that L[B, c] is monotonic: if µ1 ≤str µ2 then

L[B, c](µ1) ≤str L[B, c](µ2).

Although we can easily apply linear operations precisely to multivariate normal

measures, the same is not true of truncated multivariate normal measures — the class

of truncated multivariate normal measures is not closed under such operations [98]. To

combat this, we will introduce an abstract linear operator function L♯[B, c]:

Definition 4.2.5. The abstract linear operator function L♯[B, c] is defined over trun-

cated multivariate normal measures T [a, b]µT NN(µ,Σ), such that:

L♯[B, c](T [a, b]µT NN(µ,Σ)) = T (B[a, b]+ c)µT NN(Bµ+ c,BΣBT )

where B[a, b]+ c is defined as per interval analysis5 [129].

The safety of this abstraction is established in the following theorem, which allows us

to over-approximate the measure that we would get from applying the concrete linear

operator function to a truncated multivariate normal measure, by applying the linear

operator before the truncation.

5For an interval [a,b] = { x ∈ R | a ≤ x ≤ b }, we define addition as [a,b]+ [c,d] = [a+ c,b+ d], and

multiplication by a constant as c[a,b] = [ca,cb] if c ≥ 0 and [cb,ca] otherwise.
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Theorem 4.2.6. For all measures µ, L[B, c]◦T [a, b](µ) ≤str L♯[B, c]◦T [a, b](µ).

Proof: By definition of the operators, and since we can safely apply the new truncation

interval T (B[a, b]+ c) first (values outside this region are impossible to obtain), we

have:

L[B, c]◦T [a, b](µ)(X) =

T (B[a, b]+ c)◦L[B, c]◦T [a, b](µ)(X)

= T (B[a, b]+ c)◦L[B, c](µ(X∩{ x ∈ RN | a ≤ x ≤ b }))

= T (B[a, b]+ c)◦µ({ x | Bx+ c ∈ X∩{ x ∈ RN | a ≤ x ≤ b } })

≤str T (B[a, b]+ c)◦µ({ x | Bx+ c ∈ X })

= T (B[a, b]+ c)◦L[B, c](µ)(X) = L♯[B, c]◦T [a, b](µ)(X)

4.2.1 Relating the Concrete and Abstract Domains

We would like our concrete domain to consist of all possible measures, and our abstract

domain to be the truncated multivariate normal measures, as described. Unfortunately,

constructing an abstraction function from such a domain is not a simple task. Not only

does it contain measures that we cannot write down, but it is difficult to satisfy the

relational homomorphism property (Definition 4.1.1). Instead we restrict our concrete

domain to those measures that can be computed by a series of linear operations and

truncations applied to a multivariate normal measure. Whilst this is restrictive, it still

allows us to represent a useful class of measures, and we hope to relax this requirement

in the future. More formally:

• Our concrete domain D consists of measures of the form L[Bn, cn]◦T [an, bn]◦

. . .◦L[B1, c1]◦T [a1, b1]µT NN(µ,Σ), and is ordered by ≤str.

• Our abstract domain D♯ consists of measures of the form T [a, b]µT NN(µ,Σ),

and is also ordered by ≤str.

Note thatD♯ ⊂D, and thatD♯ is just the set of truncated multivariate normal measures.

We can now define our abstraction function as follows:

Definition 4.2.7. The abstraction function α :D→D♯ of a measure µ ∈ D is defined

inductively as follows:

α(µ) = µ if µ is a multivariate normal measure

α(T [a, b](µ)) = T [a, b](α(µ))

α(L[B, c](µ)) = L♯[B, c](α(µ))
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Note that T [a2, b2]◦T [a1, b1] = T ([a2, b2]∩ [a1, b1]) if the intersection of the intervals

is non-empty, and λx.0 (the zero measure) otherwise. We can also compose linear

operators, since L[B2, c2]◦L[B1, c1] = L[B2B1,B2c1+ c2].

Our concretisation function, γ : D♯ →D, is simply the identity map — γ(µ) = µ

for all µ ∈ D♯. We state and prove the safety of this abstraction as follows:

Theorem 4.2.8. The abstraction specified by α and γ is safe — namely, for all mea-

sures µ ∈ D, µ ≤str γ(α(µ)).

Proof: Since γ is the identity map, we need to prove that µ ≤str α(µ). We prove this

by induction on the structure of µ, which is of the form Mn ◦ . . . ◦M1µT NN(µ,Σ), for

some n ≥ 0. In the base case, when n = 0, µ = µT NN(µ,Σ), hence α(µ) = µ, since µ is a

multivariate normal measure, and so µ ≤str α(µ).

In the inductive case, we assume that for µ = Mn ◦ . . .◦M1µT NN(µ,Σ), µ ≤str α(µ).

To show that Mn+1(µ) ≤str α(Mn+1(µ)), we need to consider the two cases of Mn+1:

1. If Mn+1 = T [a, b], then we have α(T [a, b](µ)) = T [a, b](α(µ)). But from

the induction hypothesis, µ ≤str α(µ). Hence T [a, b](µ) ≤str T [a, b](α(µ)) =

α(T [a, b](µ)), since T [a, b] is monotone.

2. If Mn+1 = L[B, c], then we have α(L[b, c](µ)) = L♯[B, c](α(µ)). But from

the induction hypothesis, µ ≤str α(µ). Hence L[B, c](µ) ≤str L♯[B, c](µ) ≤str

L♯[B, c](α(µ)) = α(L[B, c](µ)), as a consequence of Theorem 4.2.6 and the fact

that L[B, c] is monotone.

4.3 Abstract Semantics of S

The abstract semantics of each method in a S program is an automaton with the

same stages as its concrete semantics, but with transitions that operate on truncated

multivariate normal measures rather than arbitrary measures. Since the structure of

the automaton is the same as for the concrete semantics, we need only present an

abstraction for the measure operators on the transitions. We therefore need to define

abstract operators for assignment, J·K
♯
p, and for the branching operators, e

♯

J·K
and e

♯
q (for

q ∈ [0,1]). Once we have done so, the abstract probabilistic automaton semantics of a

S method O. f is given by:

JO. f K
♯
pa = JO. f Kpa{J·K

♯
p / J·Kp, e

♯

J·K
/ eJ·K, e

♯
q / eq }
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Let us start with the abstract operator for assignment, J·K
♯
p:

JO. f | Xi := EK
♯
p(µ) = L♯[B, c](µ)

where B and c describe the operation of E, such that JXi:=EK(x) = Bx+ c, for a state

x of the program’s variables (a column vector of length N). This is possible because

of the restriction in the S language to linear arithmetic expressions, as motivated in

Section 3.1. Rather than applying the linear operator L[B, c], we use the abstract op-

erator from Definition 4.2.5, which over-approximates the actual measure by applying

the linear update before any truncation operators.

Note that by this definition, the abstract semantics is not compositional — as in

the concrete case, it assumes a common set of variables over the entire system, hence

remote procedure calls only make sense when the method we call is present as part of

the system. This will also be the case for our abstract interpretation, as we shall see in

Section 4.4, and it is only when we present our collecting semantics in Section 4.5 that

we will re-introduce compositionality.

For the abstract semantics of conditional operators, we have the following:

e
♯

JtrueK
(µ) = µ e

♯

J¬trueK
(µ) = λx. 0

e
♯

JXi≤cK
(µ) = T [⊥, a](µ) e

♯

J¬(Xi<c)K
(µ) = T [b,⊤](µ)

e
♯

JXi<cK
(µ) = T [⊥, b](µ) e

♯

J¬(Xi≤c)K
(µ) = T [a,⊤](µ)

e
♯
q(T [a, b]µT NN(µ,Σ)) = T [a, b](q.µT )NN(µ,Σ)

where ai = c+ 0.5, a j = ⊤ (for j , i), and bi = c− 0.5, b j = ⊥ (for j , i). We need to

add or subtract 0.5, because the variables in our language have discrete, integer values,

whereas our semantics is in terms of continuous measures. Note that there is a slight

over-approximation for the {<,> } comparisons, to avoid distinguishing between open

and closed truncation intervals in the abstract domain. The probabilistic branching

operator has the same semantics as in the concrete case.

It remains to prove that the abstract semantics is safe; that is to say, that it satisfies

the relational homomorphism property (Definition 4.1.1).

Theorem 4.3.1. Consider a S program P, with concrete semantics JPKpa and ab-

stract semantics JPK
♯
pa. For all transitions s1

M
−−→ s2 ∈ JPKpa there exists an abstract

transition s1
M♯

−−→ s2 ∈ JPK
♯
pa such that for all measures µ ∈ D, if α(µ) ≤str µ

♯ ∈ D♯ then

α(M(µ)) ≤str M♯(µ♯).

Proof: Firstly, we note that there is a bijection between concrete and abstract transi-

tions, which ensures a unique M♯ for each M. M and M♯ both consist of a sequence of
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truncation and linear operators (ignoring the identity operator as trivial). We prove the

theorem by induction on the length of this sequence, starting with the two base cases

when the length is one.

For a truncation operator, we note that the abstract semantics generates an inter-

val that over-approximates the actual set of values that satisfy the condition. Hence

if α(M(µ)) = α(T [a, b](µ)) = T [a, b](α(µ)) (using the definition of α), then M♯(µ♯) =

T [a′, b′](µ♯), where [a, b] ⊆ [a′, b′]. Hence α(M(µ)) ≤str M♯(µ♯) since α(µ) ≤str µ
♯.

If M and M♯ are linear operators then they have the forms L[B, c] and L♯[B, c]

respectively. Let α(µ) = T [a1, b1](µ1) and µ♯ = T [a2, b2](µ2), such that α(µ) ≤str µ
♯.

Then, using the monotonicity of L[B, c]: if µ1 ≤str µ2 then L[B, c](µ1) ≤str L[B, c](µ2):

α(L[B, c](µ)) = L♯[B, c](α(µ)) from the definition of α

= L♯[B, c](T [a1, b1](µ1))

= T (B[a1, b1]+ c)◦L[B, c](µ1)

≤str T (B[a2, b2]+ c)◦L[B, c](µ2) since α(µ) ≤str µ
♯

= L♯[B, c](T [a2, b2](µ2)) = L♯[B, c](µ♯)

Finally, the inductive step completes the proof. Our induction hypothesis is that

the sequence of operators Mn and M
♯
n satisfy the condition that if α(µ) ≤str µ

♯ then

α(Mn(µ)) ≤str M
♯
n(µ♯). Let Mn+1 = M ◦Mn and M

♯
n+1
= M♯ ◦M

♯
n, such that M and M♯

are base operators. Since M and M♯ are either both truncation operators or both linear

operators, it follows that α(M ◦Mn(µ)) ≤str M♯ ◦M
♯
n(µ♯) holds by the above cases.

4.4 Abstract Interpretation of S

As with the concrete semantics of the previous chapter, we can interpret the abstract

semantics of a S program in the context of an instantiation of one of its methods,

O. f (X1, . . . ,Xn). We will only consider an instantiation to be a single method call in this

section, but we will show how to handle more complex instantiations in Section 4.6.

The initial values of the variables X1, . . . ,Xn are given by an initial probability measure

µI , which must be an element of our abstract domain — a truncated multivariate normal

measure.

Let us first recall the structure of a S program, for the purposes of our abstract

interpretation. This was given in Equation 3.3 in the previous chapter, which we repeat

below:

O1. f1 ‖ · · · ‖ O1. fn1
‖ · · · ‖ OM. f1 ‖ · · · ‖ OM. fnM
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It is important to emphasise once more that this structure is purely for the purposes

of carrying out the interpretation. When we come to construct a PEPA model from

our abstract interpretation, we will ensure that only one method on an object can be

instantiated at any one time, since an object corresponds to a single shared resource.

A good way to think about it is that the abstract interpretation lets us compute the

probability of each control-flow branch if the remote procedure calls are made. The

fact that we might block for some time before the call proceeds is captured by the

performance model — in our case, a PEPA model — that we construct from this.

We will first consider the abstract interpretation of a single method O. f , without

remote procedure calls. Starting in an initial state µ
♯
I
⊢ �O. f , where µ

♯
I

is the initial

measure and �O. f is the starting stage in the probabilistic automaton semantics of O. f ,

we can construct a labelled transition system in the same way as the concrete interpre-

tation. The reachable states are all of the form µ♯ ⊢ s, where s ∈ JO. f K
S ♯
pa = JO. f KS

pa,

and µ♯ ∈ B(RN ,M(N)) is a measure over the state of the variables X1, . . . ,XN in the

method. The only difference from the concrete interpretation is that µ♯ will always be

a truncated multivariate normal measure, given that the initial measure µ
♯
I

is.

The abstract interpretation of O. f is defined as follows — this is the same as the

concrete interpretation in Equation 3.2, but over the abstract semantics J·K♯pa:

µ♯ ⊢ s
p♯

−−→♯ µ′♯ ⊢ s′ iff s
M♯

−−→ s′ ∈ JO. f K
T♯
pa ∧ µ

′♯ = M♯(µ♯)

This differs from the concrete interpretation, however, in the way we define the labels

p♯ on the transitions. If we were to use the same technique as the concrete interpre-

tation — taking the ratio between the total weight after taking the transition (µ′♯) and

that before (µ♯) — then the definition of p♯ would be as follows:

p♯ =
(M♯(µ♯))(RN)

µ♯(RN)
(4.1)

In the concrete interpretation, this is the probability of taking the transition — in par-

ticular, the values of the labels on the out-going transitions of a state always sum to

one. This is ensured by Theorem 3.4.1, which states that the total weight of the mea-

sure going into a stage is equal to that of the measure exiting the stage. In the abstract

semantics, however, we over-approximate the measures, and so the sum of the values

may be greater than one.

This leads to the question: what does this definition of p♯ mean? We know that it

is not a probability, but neither is it an upper bound of the corresponding probability
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in the concrete interpretation. To see this, notice that although the abstract numerator

(µ′♯(RN) = (M♯(µ♯))(RN)) is an upper bound of the concrete numerator, the abstract

denominator (µ♯(RN)) is also an upper bound of the concrete denominator. Hence we

cannot conclude that p♯ is an upper-bounding probability.

Because of this, we cannot use the definition of p♯ in Equation 4.1. Instead, we

propose two alternative ways of labelling the abstract interpretation, depending on

whether we want to build an approximate stochastic model, or a safe abstract model

(containing non-determinism). We use the notation p♯(µ♯ ⊢ s→ µ′♯ ⊢ s′) to denote the

label p♯ on the transition µ♯ ⊢ s→ µ′♯ ⊢ s′. Our two alternatives are:

1. Label the transitions with approximate probabilities, so that we construct a

purely stochastic process. Since the abstract semantics may result in a greater

total weight after exiting a stage than before entering it, we need to normalise

with respect to the exit measure. This is given as follows:

p♯(µ♯ ⊢ s→ µ′♯ ⊢ s′) =
µ′♯(RN)

∑

{µ′′♯ | ∃s′′. µ♯⊢s→µ′′♯⊢s′′ }

µ′′♯(RN)
(4.2)

Note that in the concrete interpretation, this approach would give precisely the

same probabilities as Equation 4.1, thanks to Theorem 3.4.1.

2. Label the transitions with upper and lower bounding probabilities. In other

words, the label is an interval of probabilities, [p
♯
L
, p
♯
U

], that contains the con-

crete transition probability p: p
♯
L
≤ p ≤ p

♯
U

.

Of these two approaches, the first results in a (discrete time) Markov chain, whilst the

second results in an abstract — or interval — Markov chain [63, 102]. This is a variant

of a Markov Decision Process (MDP) [146], and contains non-determinism because

there are many possible distributions that satisfy the constraints on the transition prob-

abilities out of a state. Because this is not a purely stochastic model, and we wish to

ultimately construct a PEPA model from our abstract interpretation, we will choose the

first approach over the second — even though it is an approximation. This is not to

say, however, that the second approach should be disregarded, and we discuss how we

might go about adopting it in Section 4.7.

At this point, it is useful to observe that the abstract interpretation might result

in highly unlikely states being considered. For example, if we begin with a variable

X ∼ N(10,1), then the probability that X is less than zero is negligibly small. To avoid
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constructing models with very small transition probabilities, which can lead to nu-

merical problems, it is therefore useful to impose a numerical threshold on transition

probabilities — if the probability is below some small value ǫ, then we round it to zero,

and consider the next state unreachable. Whilst this is an approximation, it is sensi-

ble in the context of average behaviour, where we do not want to consider extremely

rare events. As this is more of a practical concern, we will not formally include it in

our abstract interpretation — it will come into play, however, when we consider an

example.

We have now examined an abstract interpretation for individual S methods, but

in order for this to be useful we need to deal with remote procedure calls. There are two

ways in which we might extend our approach to handle this. The first, which we shall

take, is to lift the abstract interpretation of methods to the entire system as was done

in the concrete interpretation. In other words, we interpret a S program — which

consists of many objects in parallel — as a whole. The second approach would be

to carry out the abstract interpretation compositionally, and achieve a more compact

representation at the expense of over-approximating the possible behaviours of the

program. In our case, however, only one method can be executing at any time, and

so we do not need the additional complexity of this approach. Instead, we will obtain

compositionality through the collecting semantics, described in Section 4.5. Note that

we will consider only the discrete time interpretation here, as we will introduce the

rates as part of the collecting semantics.

The basic idea is precisely the same as that for the concrete probabilistic interpreta-

tion in the previous chapter. Given the abstract interpretation of individual methods, we

can define an abstract interpretation over states of the form µ ⊢ s1,1 ‖ · · · ‖ sm,nm
, where

for every method Oi. f j of every object, si, j denotes the current stage in the method’s

probabilistic automaton semantics. This is described by the following, which are direct

modifications of Equations 3.5 and 3.6, for abstract measures:

µ♯ ⊢ s1,1 ‖ · · · ‖ si, j ‖ · · · ‖ sm,nm

p
−→ µ′♯ ⊢ s1,1 ‖ · · · ‖ �Oi. f j

‖ · · · ‖ sm,nm

iff µ♯ ⊢ si, j
p
−→ µ′♯ ⊢ �Oi. f j

∧¬blocked(si, j)

µ♯ ⊢ s1,1 ‖ · · · ‖ si, j ‖ · · · ‖ si′, j′ ‖ · · · ‖ sm,nm

p
−→ µ′♯ ⊢ s1,1 ‖ · · · ‖ s′i, j ‖ · · · ‖�Oi′. f j′

‖ · · · ‖ sm,nm

iff µ♯ ⊢ si, j
p
−→ µ′♯ ⊢ s′i, j∧ s′i, j = s[Oi′. f j′]∧¬blocked(si, j)

where blocked(si, j) is defined as in Equation 3.7.
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If we instantiate a S program with a call to the method Oi. f j(X1, . . . ,Xn), then the

abstract interpretation is the probabilistic tree induced by applying the above transition

rules to the initial state:

µ
♯
I
⊢ �O1. f1 ‖ · · · ‖ �Oi. f j−1

‖ �Oi. f j
‖ �Oi. f j+1

‖ · · · ‖ �On. fnm

This is the same as Equation 3.4, except that µ
♯
I

must be a truncated multivariate nor-

mal distribution, rather than a general measure. Importantly, this describes the initial

distribution of the variables in the S program, and we will get a different abstract

interpretation for different values of µ
♯
I
. We require the user to specify this distribu-

tion, since this corresponds to analysing the program in a particular operating envi-

ronment — for example, a web service application under a particular distribution of

requests from clients. It would be cumbersome for the user to have to specify this dis-

tribution directly, however, since only the initial distribution of the argument variables

should need to be specified — instead, we can characterise the abstract interpretation

by a smaller set of parameters.

Let us write Xargs = {X1, . . . ,Xn } for the set of argument variables. For each argu-

ment Xk, we let the user specify its mean Mean(Xk), variance Var(Xk), and truncation

interval [Lower(Xk),Upper(Xk)]. In practice, in an implementation of our analysis, we

would need to provide an interface with which the user can enter this information —

for example, through a dialogue box, by annotating their code, or by importing the in-

formation from an external source, such as an annotated UML use case diagram. Once

we have this information, we can construct an initial measure µ
♯
I

as follows:

µ
♯
I
= T [a, b]NN(µ,Σ) (4.3)

where

a(i) =















Lower(X(i)) if X(i) ∈ Xargs

⊥ otherwise

b(i) =















Upper(X(i)) if X(i) ∈ Xargs

⊤ otherwise

µ(i) =















Mean(X(i)) if X(i) ∈ Xargs

0 otherwise

Σ(i, j) =















Var(X(i)) if X(i) ∈ Xargs∧ i = j

0 otherwise

We initialise non-arguments to have a mean and variance of zero, and a truncation

interval of [⊥,⊤]. This is a decision that we make, on the basis that we would expect
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(a) System-level stages (b) System-level abstract interpretation

Figure 4.2: Abstract interpretation of the client-server example from Figure 3.1

variables to be initialised before they are used — in this case, any choice would be

equally good, as it will be overwritten. There is nothing in the S language that

prevents an uninitialised variable from being used, however, and so our choice here can

affect the behaviour of a program. Note that we could also have chosen the truncation

interval to be [0,0], since a variance of zero implies a point measure — this would

result in an equivalent initial measure to the above.

For the argument variables, we assume that they are independent, in that all the

covariances are zero. We could easily generalise this, however, by allowing the user to

specifying the initial covariances between the arguments in addition to their variances.

To illustrate this progress in more detail, let us return to the client-server exam-

ple from the previous chapter. The program was given in Figure 3.1, and consists

of three methods: Client.buy, Server.getPrice and Server.buy. Of these,

only Client.buy performs any remote procedure calls, and the concrete semantics

of this method was shown in Figure 3.5. This means that the probabilistic automa-

ton for Client.buy contains four stages, whereas those for Server.getPrice and

Server.buy each contain only two (� and �).

Figure 4.2 (a) shows the transitions between the system-level stages in the program,

where the position in the parallel composition indicates the method that each stage

belongs to: Client.buy ‖ Server.getPrice ‖ Server.buy. The initial stage is

� ‖ � ‖ �, which corresponds to instantiating the program with a call to Client.buy.

The transitions corresponding to Server.getPrice and Server.buy are as labelled,
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Client.buy Server.getPrice Server.buy

Varsarg quantity quantity quantity

cash

Varsloc price max order

〈price − cash〉 〈quantity − max order〉

success

Figure 4.3: Variables in the client-server example from Figure 3.1

and all other transitions come from the probabilistic automaton of Client.buy.

Figure 4.2 (b) shows the system-level abstract interpretation of the program.

Here we use the shortand notation {µ1, . . . ,µn } ⊢ S to account for the set of states

µ1 ⊢ S , . . . ,µn ⊢ S . The subscript for each measure indicates the sequence of transitions

taken, and there is a transition from µi1···in−1
⊢ S to µi1···in−1in ⊢ S ′ if there is a shorthand

transition M ⊢ S → M′ ⊢ S ′ in the figure such that µi1···in−1
∈ M and µi1···in−1in ∈ M′.

Note that we omit the superscript ‘♯’ on these measures — since they are all truncated

multivariate normal, we will not confuse the concrete and abstract domains.

Before describing the measures in this abstract interpretation in more detail, we

need to be quite specific about the variables used in the program, since this determines

the dimension of the truncated multivariate normal measures that we use. Figure 4.3

lists all the variables used by each method, where Varsarg refers to its argument vari-

ables, and Varsloc to its local variables. There are two things to point out here:

1. Although all three methods have an argument variable called quantity, these

are different variables, and should technically be distinguished by alpha-

renaming before carrying out the program analysis.

2. The variables 〈price − cash〉 and 〈quantity − max order〉 are not present

in the original program, but are needed in order to compare two variables —

in this case, the comparisons ‘price ≤ cash’ and ‘quantity ≤ max order’

respectively. Recall that the actual syntax of S only allows a variable to be

compared to a constant.

There are a total of twelve variables in the program — nine are shown in the above

figure, and there is additionally a return variable for each method. To avoid writing

out twelve-by-twelve matrices, however, we will cheat a little by observing that the
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variable quantity is only copied between the methods, and never changes, and that

the return values of Server.getPrice and Server.buy are assigned without modi-

fication to price and success respectively. We will record just one variable in each

of these classes, and also omit the return variable of Client.buy, which is not used.

Given this, we can reduce ourselves to just seven variables, and we will specify the

vector of variables X for the program as follows:

X(1) = quantity X(2) = cash X(3) = price

X(4) = success X(5) = max order X(6) = 〈price−cash〉

X(7) = 〈quantity−max order〉

To execute the abstract interpretation, we first need to decide upon an initial mea-

sure for the program. We will choose the following distributions for the arguments

quantity and cash:

quantity ∼ T [0,⊤]N(8,9)

cash ∼ T [0,⊤]N(70,4)

This is a fairly arbitrary choice, and its only real purpose is to exercise all the possi-

bilities in the Server.getPrice method, so that we can see how the probabilities are

calculated from the measures. If we take the above distributions, we can construct an

initial measure over X as follows, using the construction in Equation 4.3:

µI = µ1 = T
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We can now proceed to compute the abstract interpretation, starting with the above

initial measure, µ1. Since Figure 4.2 (b) contains 29 measures6 however, we will not

compute all of them here, but refer the reader to Appendix B for a complete account.

We will instead look at evaluating just one path in the abstract interpretation.

From the initial stage � ‖ � ‖ � there is just one transition leading to s1 ‖ � ‖ �,

which corresponds to calling Server.getPrice. Since this is the first command in

6Technically, there are 35 measures, since we need two measures each for µ111112, µ111122, µ112112,

µ112122, µ113112, and µ113122 — these correspond to the condition ‘success , 1’, which should be

viewed as the disjunction ‘success < 1 ∨ success > 1’. We do not clutter Figure 4.2 (b) in this regard,

but these are given in Appendix B where we show all the measures in detail.
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Client.buy, and there are no modifications to any of the variables before the remote

procedure call takes place, the measure is unchanged: µ11 = µ1. The next transition is

internal to Server.getPrice, and there are three possibilities depending on the value

of quantity. We will consider the case when quantity > 10, which leads to the

measure µ111 as follows:

µ111 = T
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The changes from µ11 (highlighted in bold) are due to assigning ‘8 × quantity’ to

the variable price, and restricting the interval of quantity to [10.5,⊤]. The rea-

son for [10.5,⊤] and not [10,⊤] is that the original program was written in terms of

integer-valued variables, whereas our semantics is in terms of real-valued variables.

If we consider the integer value 10 to be the real interval [9.5,10.5], then the interval

[10.5,⊤] naturally follows from the condition ‘quantity > [9.5,10.5]’.

From state µ111 ⊢ s1 ‖ � ‖ �, the next transition is internal to Client.buy, and

corresponds to the condition ‘price ≤ cash’. When this condition is true, we move to

stage s2 ‖ � ‖ � with the following measure:

µ1111 = T
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The changes here correspond to an assigment to the variable 〈price−cash〉, followed

by a truncation due to the condition ‘〈price−cash〉 ≤ 0’.

After entering the stage s2 ‖ � ‖ �, the next transition is internal to Server.buy.

Again, there are two possible transitions, but we will just consider the one correspond-
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ing to ‘quantity ≤ max order’:

µ11111 = T
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Here, we perform an assignment to max order and to the derived variable

〈quantity−max order〉, then truncate according to ‘〈quantity−max order〉 ≤ 0’,

before assigning 1 to success.

The final transition we consider is between the stages s2 ‖ � ‖ � and � ‖ � ‖ �. For

our measure µ11111, only ‘success = 1’ will lead to a non-zero total weight, and so

we choose the transition corresponding to this case:

µ111111 = T
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Here, we first perform the truncation of success to [0.5,1.5], and then the assignment

‘cash := cash − price’.

The total weights of µ1, . . . ,µ111111 are as follows (those of the other measures in

Figure 4.2 (b) can be found in Appendix B):

Measure µ1 µ11 µ111 µ1111 µ11111 µ111111

Total Weight 0.996170 0.996170 0.202328 0.202411 0.202414 0.202414

Computing these total weights is non-trivial, as it involves integrating a multivariate

normal distribution. Efficient algorithms do exist, however, such as the one described

in [76], which we made use of in the form of a Java library [113].

On the basis of these total weights (along with those from Appendix B for the

alternative branches), we can compute the following transitions in the abstract inter-



4.5. Abstract Collecting Semantics of S 87

Figure 4.4: Labelled abstract interpretation of the client-server example

pretation. The probabilities are given to three decimal places:

µ1 ⊢ � ‖ � ‖ �
1.000
−−−−→ µ11 ⊢ s1 ‖ � ‖ �
0.203
−−−−→ µ111 ⊢ s1 ‖ � ‖ �
1.000
−−−−→ µ1111 ⊢ s2 ‖ � ‖ �
1.000
−−−−→ µ11111 ⊢ s2 ‖ � ‖ �

1.000
−−−−→ µ111111 ⊢ � ‖ � ‖ �

The value 0.203 is arrived at by taking the total weight of µ111 divided by the sum of

the total weights of the measures at successor states of µ11 ⊢ s1 ‖ � ‖ �.

The full abstract interpretation is shown in Figure 4.4, where we exclude those

states whose measure has a total weight of zero (when rounding to three decimal

places), since they are effectively unreachable. To make sense of this diagram, Fig-

ure 4.5 shows the condition in the program that corresponds to each transition in the

abstract interpretation. Since we have not included unreachable states, some of the

conditions do not occur — for example, ‘quantity > max order’.

4.5 Abstract Collecting Semantics of S

In the abstract interpretation that we just defined, a S program is treated at the sys-

tem level, in that we record the state of every method at each point in time. Whilst this

gives us the analysis result we intend, it is not a good basis from which to construct
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Transition Condition in Program

µ1→ µ11

µ11→ µ111 quantity > 10

µ11→ µ112 0 < quantity ≤ 10

µ11→ µ113 quantity ≤ 0

µ111→ µ1111 price ≤ cash

µ112→ µ1121 price ≤ cash

µ112→ µ1122 price > cash

µ113→ µ1131 price ≤ cash

µ1111→ µ11111 quantity ≤ max order

µ1121→ µ11211 quantity ≤ max order

µ1131→ µ11311 quantity ≤ max order

µ11111→ µ111111 success = 1

µ11211→ µ112111 success = 1

µ11311→ µ113111 success = 1

Figure 4.5: Program conditions corresponding to abstract interpretation transitions

a useful performance model. Directly going from the abstract interpretation to a con-

tinuous time Markov chain would be possible, but subsequent manipulation would be

difficult, and we would lose the link between the model and the program.

The aim of this section is to present a collecting semantics that restores the compo-

sitionality of the original program. More specifically, we will construct a PEPA model

from the abstract interpretation. We will do this in two parts:

1. In Section 4.5.1 we project system-level states in the abstract interpretation onto

states for an individual method O. f . That is to say, the projected states only refer

to the stages in O. f , and their measures only refer to the variables occurring in

O. f . Further to this, we lift our projection so that it operates on transitions in the

abstract interpretation. Projected transitions will have the following form:

µ♯ ⊢ s
(µ
♯
in

),p,〈µ
♯
out〉

−−−−−−−−−→ µ′♯ ⊢ s′

where (µ
♯
in

) is a guard, corresponding to ‘receiving’ a measure µ
♯
in

, and 〈µ
♯
out〉 is

an effect, corresponding to ‘outputting’ a measure µ
♯
out. In this way, we collect

information about the interaction points within our projected transition system.
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Since we will be dealing exclusively with abstract measures in this section, we

will subsequently write just µ in place of µ♯.

2. In Section 4.5.2 we use these projected transitions to construct a sequential PEPA

component for every method. Intuitively, the guards correspond to activities with

passive rates, and the effects correspond to those with active rates. We then com-

bine the components for each method O. f of an object O into a single sequential

component for the entire object, so that it is viewed as a single resource in the

model. Finally, we construct the system equation for the PEPA model.

An important property of the collecting semantics is that the embedded DTMC of the

underlying CTMC of the PEPA model we generate is the same as the DTMC given by

the abstract interpretation.

4.5.1 Projection from the System onto a Method

The first stage of our collecting semantics is to define a mapping from states of the

system onto states of individual methods. For each method O. f , we want to have

states of the form µ ⊢ s, where s ∈ JO. f K
S ♯
pa, and µ is a truncated multivariate normal

measure over only those variables in O. f . We will do this by defining a projection

operator πO. f , which maps each system state onto a state of O. f . First, however, we

need to formally define the set of variables that occur in a method.

Given a S command C in the context of a method O. f , the set of variable defi-

nitions VarsO. f (C) can be computed recursively as follows:

VarsO. f (skip) = { }

VarsO. f (return E) = { }

VarsO. f (X := E) = {X }

VarsO. f (X := f ′(X1, . . . ,Xn)) = {X }∪Varsloc(O. f ′)

VarsO. f (X := O′. f ′(X1, . . . ,Xn)) = {X }

VarsO. f (C1 ; C2) = VarsO. f (C1)∪VarsO. f (C2)

VarsO. f (if B then C1 else C2) = VarsO. f (C1)∪VarsO. f (C2)

VarsO. f (pif q then C1 else C2) = VarsO. f (C1)∪VarsO. f (C2)

The only notable cases here are for method calls — we do not examine remote calls,

but we include the local variables of local calls. Varsloc will be defined momentarily.

We will additionally define two ways of extracting sets of variables from method

definitions — Varsloc, which extracts the variables defined in the body of the method,
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Varsarg, which extracts the argument variables of the method, and Varsint, which ex-

tracts its interface variables (the argument and return variables):

Varsarg(O. f (X1, . . . ,Xn) {C }) = {X1, . . .Xn }

Varsint(O. f (X1, . . . ,Xn) {C }) = {XO. f ,X1, . . .Xn }

Varsloc(O. f (X1, . . . ,Xn) {C }) = VarsO. f (C)

Finally, to simplify matters, we will use the following shorthand notations, making use

of the function def defined in the previous chapter. Recall that def (O. f ′) refers to the

static definition of O. f ′, which has the form O. f ′(X1, . . . ,Xn) {C }:

Varsarg(O. f ) = Varsarg(def (O. f ))

Varsint(O. f ) = Varsint(def (O. f ))

Varsloc(O. f ) = Varsloc(def (O. f ))

Vars(O. f ) = Varsint(O. f )∪Varsloc(O. f )

It is important to note that Vars(O. f ) defines a set of variables, whereas for the purposes

of defining our measures, we use a vector of variables. This is because truncated

multivariate normal measures are defined using vectors and matrices, so we need to

map variables onto indices by choosing an appropriate ordering. Recall that we use

X to denote the vector of N variables for the entire S program. Given a set of

variables X ⊆ {X(i) | 1 ≤ i ≤ N } we can uniquely define a new vector X′ of length |X|

by the following conditions:

∀1 ≤ i ≤ |X|. X′(i) ∈ X

∀1 ≤ i < j ≤ |X|. X′(i) , X′( j)∧ ιX(X′(i)) < ιX(X′( j))

We will refer to X′ as the order-preserving vector of X with respect to X. Although

this is the most natural ordering, as it preserves that of the original vector X, observe

that we could equally choose any other ordering — since the purpose of this vector

is to enable us to project a truncated multivariate normal measure onto a subset of its

variables, a different ordering just corresponds to a permutation of the mean vector,

covariance matrix, and truncation vectors.

Let us now define a projection function πX′ , which takes a truncated multivari-

ate normal measure, and projects it onto just those variables in X′. We will write

NX′

|X′|
(µ′,Σ′) to mean the multivariate normal measure N|X′|(µ

′,Σ′), labelled with the

vector of variables X′ that it refers to. This label has no effect on the semantics of the

measure, but is used when comparing measures — two measures are the same iff they
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have the same mean vector, covariance matrix, truncation interval, scaling factor and

label.

πX′(µT T [a, b]NN(µ,Σ)) = µT T [a′, b′]NX′

|X′|(µ
′,Σ′) (4.4)

where

a′(i) = a(ιX(X′(i))) µ
′(i) = µ(ιX(X′(i)))

b′(i) = b(ιX(X′(i))) Σ
′(i, j) = Σ(ιX(X′(i)), ιX(X′( j)))

If µ is a truncated multivariate normal distribution, then πX′(µ) gives the marginal

distribution over the variables in X′. We can similarly define a projection function

over stages of the system as follows:

πOi. f j
(s1,1 ‖ · · · ‖ si, j ‖ · · · ‖ sm,nm

) = si, j

Finally, let us bring these two together to define a projection function πOi. f j
over states.

A state of the system, µ ⊢ s1,1 ‖ · · · ‖ si, j ‖ · · · ‖ sm,nm
, is projected onto a state of the

method Oi. f j as follows:

πOi. f j
(µ ⊢ s1,1 ‖ · · · ‖ si, j ‖ · · · ‖ sm,nm

) = πX′(µ) ⊢ πOi. f j
(s1,1 ‖ · · · ‖ si, j ‖ · · · ‖ sm,nm

)

= πX′(µ) ⊢ si, j

where X′ is the order-preserving vector of Vars(Oi. f j) with respect to X.

This allows us to project states of the system onto those of a method, but it does

little to help us with transitions. As an example, consider a S program with

just three objects, and one method per object, such that the system is of the form

O1. f ‖ O2. f ‖ O3. f . If O1. f just calls O2. f and returns, and O2. f just calls O3. f and

returns (and O3. f contains no branching instructions or method calls), then the abstract

interpretation will look like the following:

µI ⊢ � ‖ � ‖ �
p1
−−→ µ1 ⊢ s1[O2. f ] ‖ � ‖ �
p2
−−→ µ2 ⊢ s1[O2. f ] ‖ s2[O3. f ] ‖ �
p3
−−→ µ3 ⊢ s1[O2. f ] ‖ s2[O3. f ] ‖ �
p4
−−→ µ4 ⊢ s1[O2. f ] ‖ � ‖ �

p5
−−→ µ5 ⊢ � ‖ � ‖ �

Here, we omit the subscripts for � and � since the methods they belong to are clear

from their position in the parallel composition. Note that in this simple case, all the

probabilities p1, . . . , p5 will be one, since no other transitions are possible. However,

we could also view this as a fragment of the abstract interpretation of a more compli-

cated program, where other transitions are possible from each state.
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Let us consider what happens when we apply the projection function πO1. f to each

of the above states. Letting X1 be the order-preserving vector of Vars(O1. f ) with re-

spect to X, we have the following transitions:

πX1
(µI) ⊢ � → πX1

(µ1) ⊢ s1[O2. f ] → πX1
(µ5) ⊢ �

�
(4.5)

There are two important observations to make here. Firstly, πX1
(µ1) = πX1

(µ2) = . . . =

πX1
(µ4), since the transitions when O1. f is blocked in stage s1 only involve variables

in other methods. This means that there are two possible transitions out of the state

πX1
(µ1) ⊢ s1[O2. f ] — one is a loop corresponding to blocking, and the other is a transi-

tion to a different state, corresponding to the remote call returning. Secondly, we have

not labelled the transitions — it is no longer meaningful to use a probability, since we

have introduced a choice between two transitions when there previously was none.

The fact that there is such a choice seems to imply that we have introduced non-

determinism into our transition system. This is true to a certain extent, since the choice

of transition is made externally of O1. f . Note that this is the problem that we discussed

in Section 3.5, and are now in a position to properly address.

The simplest approach we could take to avoid non-determinism would be to con-

struct a crude approximation by taking an “average” probability for making each tran-

sition. For example, here this would give us a probability of 3
4

for blocking, and 1
4

for moving to the state πX1
(µ5) ⊢ �. Such an approach, however, implies that we are

modelling each method independently — this is not the case here, since we wish to

construct a performance model of the entire system. The purpose of our projection

is not to throw away the information about the other methods, but to regain compo-

sitionality. Hence, we will construct a PEPA model in which the non-determinism is

resolved by cooperating with another component. Before we do so in the next sub-

section, however, we need to capture some information about the argument and return

values of a method call. We will do this by lifting our projection operator to transitions.

To make the mapping into a PEPA model as easy as possible, we will introduce

projected transitions of the following form:

µ ⊢ s
(µin),p,〈µout〉
−−−−−−−−−→ µ′ ⊢ s′

This means that if we input the measure µin, we take the transition with probability

p, and in doing so output the measure µout. Due to the nature of our probabilistic

automaton semantics, every stage corresponds to a remote method call, and so we will

always have an input and output measure on every transition.
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Intuitively, a method will input a measure when it is invoked, or when it receives a

return value and is unblocked. It will output a measure when it calls another method,

or when it returns a value. It is important to realise, however, that this notion of input

and output is abstract, since it does not affect the measure µ′ after taking the transition.

µ′ has already been modified in the way we expect by the system-level abstract inter-

pretation itself. Hence these inputs and outputs are simply used as labels, to enable us

to match synchronisation points in different methods.

We can now lift the projection operator πO. f to induce a transition system of the

above form as follows, where we abbreviate a system stage s1,1 ‖ · · · ‖ si, j ‖ · · · ‖ sm,nm

to just S for brevity:

πO. f (µ ⊢ S
p
−→ µ′ ⊢ S ′) =



















{ } if πO. f (µ ⊢ S ) = πO. f (µ′ ⊢ S ′)∨S = �O. f

{πO. f (µ ⊢ S )
κin,p,κout
−−−−−−−→ πO. f (µ′ ⊢ S ′) } otherwise

(4.6)

where

κin =















(πVarsarg(O. f )(µ)) if πO. f (S ) = �O. f

(πVarsint(O′. f ′)(µ)) if πO. f (S ) = s[O′. f ′]

κout =















〈πVarsint(O. f )(µ
′)〉 if πO. f (S ′) = �O. f

〈πVarsarg(O′. f ′)(µ
′)〉 if πO. f (S ′) = s[O′. f ′]

When we use Varsint(O. f ) in the above, we really mean the order-preserving vector of

Varsint(O. f ) with respect to X. The reason for returning a set of transitions is to allow

us to remove self-loops, which will not contribute to the PEPA model we generate. We

also remove transitions out of the terminal stages �O. f , as we shall explicitly deal with

instantiating methods when we map onto PEPA in the next section.

To understand this, let us look at the case of κin. If the transition is from the initial

stage �O. f , then we input the measure on the argument variables of O. f before execut-

ing the transition — i.e. the initial values of the method’s arguments. If the transition

is from an intermediate stage s[O′. f ′], however, we need to input the return value of

the method O′. f ′. But in order for O. f to be able to make a transition, O′. f ′ must have

already terminated, and so we look at the interface variables of O′. f ′ before execut-

ing the transition. Note that it is not sufficient in this latter case to look at only the

return variable XO′. f ′ , since we would be unable to distinguish between two instances

where we return the same value (in terms of mean and variance), but have different

covariances with respect to the arguments we called the method with.

If we view our abstract interpretation to be a set of transitions T , each of the form
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µ ⊢ S
p
−→ µ′ ⊢ S ′, then our collecting semantics for the method O. f is as follows:

CollO. f (T ) =
⋃

t∈T

πO. f (t)

Returning to our example from Equation 4.5, we can now label the transitions:

πX1
(µI) ⊢ �

(µcall1
),p1,〈µcall2

〉

−−−−−−−−−−−−−→ πX1
(µ1) ⊢ s1[O2. f ]

(µret2
),p5,〈µret1

〉

−−−−−−−−−−−−→ πX1
(µ5) ⊢ �

Notice that the self-loop on the second state has disappeared, but the possibility of

blocking is still present due to the guards on the transitions. The values of µcall2 and

µret2 depend on the actual measures in the abstract interpretation of the program, but

are synchronised with those in the collected transitions for O2. f :

πX2
(µ1) ⊢ �

(µcall2
),p2,〈µcall3

〉

−−−−−−−−−−−−−→ πX2
(µ2) ⊢ s2[O3. f ]

(µret3
),p4,〈µret2

〉

−−−−−−−−−−−−→ πX2
(µ4) ⊢ �

where X2 is the order-preserving vector of Vars(O2. f ) with respect to X. Finally, for

O3. f , there is only one collected transition:

πX3
(µ2) ⊢ �

(µcall3
),p3,〈µret3

〉

−−−−−−−−−−−−−→ πX3
(µ3) ⊢ �

where X3 is the order-preserving vector of Vars(O3. f ) with respect to X.

Returning to our client-server example, we can project the abstract interpretation

shown in Figure 4.4 by directly applying Equation 4.6. We will use C.B as shorthand

for Client.buy, and S .P and S .B for Server.getPrice and Server.buy respec-

tively. To illustrate how this is done, let us examine the projection of the first transition

in Figure 4.4 onto Client.buy. Recall that the system-level transition is:

µ1 ⊢ � ‖ � ‖ �
1
−→ µ11 ⊢ s1[S .P] ‖ � ‖ �

Applying Equation 4.6, we get the following (we define κin and κout momentarily):

πC.B(µ1) ⊢ �
κin,1,κout
−−−−−−→ πC.B(µ11) ⊢ s1[S .P]

Here, we use πC.B(µ) to mean πX′(µ) where X′ is the order-preserving vector of

Vars(C.B) with respect to X. In our case, X′ is a vector of length 5, such that:

X′(1) = quantity X′(2) = cash X′(3) = price

X′(4) = success X′(5) = 〈price−cash〉
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πC.B(µ1) ⊢ �
(πVarsarg(C.B)(µ1)),1,〈πVarsarg(S .P)(µ11)〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−→ πC.B(µ11) ⊢ s1

πC.B(µ11) ⊢ s1 = πC.B(µ111) ⊢ s1

(πVarsint (S .P)(µ111)),1,〈πVarsarg(S .B)(µ1111)〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ πC.B(µ1111) ⊢ s2

πC.B(µ11) ⊢ s1 = πC.B(µ112) ⊢ s1

(πVarsint (S .P)(µ112)),0.476,〈πVarsarg(S .B)(µ1121)〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ πC.B(µ1121) ⊢ s2

πC.B(µ11) ⊢ s1 = πC.B(µ112) ⊢ s1

(πVarsint (S .P)(µ112)),0.533,〈πVarsint (C.B)(µ1122)〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ πC.B(µ1122) ⊢ �

πC.B(µ11) ⊢ s1 = πC.B(µ113) ⊢ s1

(πVarsint (S .P)(µ113)),1,〈πVarsarg(S .B)(µ1131)〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ πC.B(µ1131) ⊢ s2

πC.B(µ1111) ⊢ s2 = πC.B(µ11111) ⊢ s2

(πVarsint (S .B)(µ11111)),1,〈πVarsint (C.B)(µ111111)〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ πC.B(µ111111) ⊢ �

πC.B(µ1121) ⊢ s2 = πC.B(µ11211) ⊢ s2

(πVarsint (S .B)(µ11211)),1,〈πVarsint (C.B)(µ112111)〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ πC.B(µ112111) ⊢ �

πC.B(µ1131) ⊢ s2 = πC.B(µ11311) ⊢ s2

(πVarsint (S .B)(µ11311)),1,〈πVarsint (C.B)(µ113111)〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ πC.B(µ113111) ⊢ �

πS .P(µ11) ⊢ �
(πVarsarg(S .P)(µ11)),0.203,〈πVarsint(S .P)(µ111)〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ πS .P(µ111) ⊢ �

πS .P(µ11) ⊢ �
(πVarsarg(S .P)(µ11)),0.795,〈πVarsint(S .P)(µ112)〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ πS .P(µ112) ⊢ �

πS .P(µ11) ⊢ �
(πVarsarg(S .P)(µ11)),0.002,〈πVarsint(S .P)(µ113)〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ πS .P(µ113) ⊢ �

πS .B(µ1111) ⊢ �
(πVarsarg(S .B)(µ1111)),1,〈πVarsint(S .B)(µ11111)〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ πS .B(µ11111) ⊢ �

πS .B(µ1121) ⊢ �
(πVarsarg(S .B)(µ1121)),1,〈πVarsint(S .B)(µ11211)〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ πS .B(µ11211) ⊢ �

πS .B(µ1131) ⊢ �
(πVarsarg(S .B)(µ1131)),1,〈πVarsint(S .B)(µ11311)〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ πS .B(µ11311) ⊢ �

Figure 4.6: Projected abstract interpretation of the client-server example
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As an example, πC.B(µ1) results in the following projected measure:

πC.B(µ1) = T
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We now just need to find the values of κin and κout with which to label our tran-

sition. Since the initial stage is �C.B, κin will be (πVarsarg(C.B)(µ1)), which corre-

sponds to invoking Client.buy with the arguments given by µ1. Similarly, the target

stage is s[S .P], and so κout will be 〈πVarsarg(S .P)(µ11)〉, which corresponds to invoking

Server.getPrice with the arguments given by µ11. Putting these directly onto the

projected transition, we get:

πC.B(µ1) ⊢ �
(πVarsarg(C.B)(µ1)),1,〈πVarsarg(S .P)(µ11)〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ πC.B(µ11) ⊢ s1

This transition can be read informally as “if we are in state πC.B(µ1) ⊢ � and

Client.buy is invoked with the arguments µ1, then with probability 1 we will invoke

Server.getPrice with the arguments µ11 and move to state πC.B(µ11) ⊢ s1”.

The complete set of projected transitions for each method is shown in Figure 4.6.

The labels on stages s1 and s2 are omitted to save space. The construction of each of

these transitions follows exactly the same pattern as above, but it is important to note

that the equalities between states — for example, πC.B(µ11) ⊢ s1 = πC.B(µ111) ⊢ s1 —

refer to the measures and projections over the full vector of variables for the program

(i.e. all twelve variables as opposed to just seven). This is the only real consequence of

‘cheating’ by eliminating certain variables that appear to be redundant — everything

else, including the total weight of the measure, is the same for the reduced set of

variables.

4.5.2 Construction of the PEPA Model

Given a collected transition system as defined in the previous section, it is now straight-

forward to map onto PEPA components. We will do this in three stages — first con-

structing a sequential component for each method O. f , then combining these to create

one component per object O, and finally constructing the system equation.

It is important to realise that at this stage in the analysis, the semantics of measures

becomes unimportant. The transitions are already labelled with probabilities due to the
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abstract interpretation, and so the measures have no other purpose that to act as labels,

which we will use in constructing PEPA activity types. Further to this, we shall refer

to states µ ⊢ s by just a single meta-variable S , as there is no longer any need to ‘look

inside’ at the actual measure.

Before we define our mapping onto PEPA, let us introduce some useful notation,

which allows us to collect the set of transitions corresponding to a particular starting

state S and input measure κblock. We do so using a function TransO. f (S , κblock), and we

additionally define the predicate InputO. f (S , κblock) which evaluates to true iff κblock is

a possible input in state S :

TransO. f (S , κblock) = {S 1

κin,p,κout
−−−−−−−→ S 2 ∈ CollO. f (T ) | S = S 1∧ κblock = κin }

InputO. f (S , κblock) = TransO. f (S , κblock) , ∅

where T is the set of transitions corresponding to the abstract interpretation of the

program.

We will define a sequential PEPA state for every state S that occurs in the collected

abstract interpretation of the method O. f . As it does not matter what name we decide

to give this (so long as every occurrence has the same name), we shall denote it by

State(O. f ,S ). We have a similar definition for action types, Act(κ), defined in such a

way that Act((µ)) = Act(〈µ〉). Note that Equation 4.4 ensures that the input measures to

different methods will have different labels, and so will lead to different action types

even if the underlying measure is the same.

For each state S in the collected abstract interpretation of the method O. f , we

generate the following sequential state definitions in PEPA:

State(O. f ,S )
def

=
∑

{κin | InputO. f (S ,κin) }

(Act(κin),⊤).State(O. f ,S , κin)

State(O. f ,S , κin)
def

=
∑

{S
κin,p,κout
−−−−−−−→S ′∈TransO. f (S ,κin) }

(Act(κout),R(O. f , p,S ′)).State(O. f ,S ′)

(4.7)

where we introduce an intermediate state State(O. f ,S , κin) for each possible input κin,

to make the presentation more readable. We define the rate of the output activity as:

R(O. f , p,S ′) =















p.((RI(O))−1+ (RE(O))−1)−1 if S ′ = µ ⊢ �O. f

p.((RI(O))−1+ (RE(O′))−1)−1 if S ′ = µ ⊢ s[O′. f ′]

These correspond to Equations 3.8 and 3.9 of the continuous time concrete interpreta-

tion in Section 3.4.2.
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Given this, we can generate a sequential PEPA component for each call to a method

O. f in the S program — for each initial state S of the form µ ⊢ �O. f , we generate a

PEPA component with initial state State(O. f ,S ). Note, however, that all such compo-

nents will lead to an absorbing state corresponding to a state in the collected abstract

interpretation of the form µ ⊢ �O. f , because we do not collect transitions from the �O. f

to the �O. f stages. This is a problem, since we really want to ‘reset’ the method after

each call, to allow it to be called again. We will fix this, however, in the process of

constructing a single PEPA component for each object O in the program.

Let Defs(O. f ) be the set of definitions (of the form A
def

= C), and States(O. f ) be the

set of all states generated from the collected abstract interpretation of the method O. f .

We will define the following auxilliary terms:

Defs(O) =
⋃

f Defs(O. f )

States(O) =
⋃

f States(O. f )

InitDefs(O) =
⋃

f {State(O. f ,S )
def

=C ∈ Defs(O. f ) | S = µ ⊢ �O. f }

TermStates(O) =
⋃

f {State(O. f ,S ) ∈ States(O) | S = µ ⊢ �O. f }

Here Defs(O) and States(O) collect together all the definitions and states corresponding

to the object O, respectively. InitDefs(O) is the set of all definitions corresponding

to an initial stage �O. f of a method O. f , and TermStates(O) is the set of all states

corresponding to its terminal stage �O. f .

Using the above, we can construct a new set of definitions for the object O, which

collects them under a single sequential component, with the initial state State(O):

NewDefs(O) =























State(O)
def

=
∑

A
def
=C∈InitDefs(O)

C























∪ (Defs(O)\InitDefs(O))[State(O)/TermStates(O)]

(4.8)

where [State(O)/TermStates(O)] should be read as substituting every occurrence of

a name in TermStates(O) by State(O). Recall from Equation 4.4 that we label the

projected measures with the variables that they refer to, which also records the method

that they refer to. This means that there is no possibility of overlap between the action

types of different methods belonging to the same object.

It is now straightforward to write down a system equation for our PEPA model (of

a S program with M objects) as follows:

State(O1)⊲⊳
∗
· · · ⊲⊳

∗
State(OM)
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where ‘P⊲⊳
∗

Q’ means that we synchronise over all shared action types in P and Q.

More formally, this is equivalent to ‘P⊲⊳
L

Q’, where L is the intersection of the sets of

action types that occur in P and Q. The order in which we apply the compositions does

not matter, as there are no name conflicts, or internal choices, in the model.

There is clearly a big problem with this system equation as it stands, however —

it is a deadlocked process. This is because all methods are in effect ‘waiting’ to be

called, and are blocking on passive activities. We therefore need to instantiate the

model, given that the program was instantiated with a call to method Oi. f j, and an

initial measure µI .

There are two potential ways of doing this. The most direct would be to change

the state corresponding to the object Oi in the system equation, so as to hard-code

the call to the initial method. An alternative is to introduce an additional component

corresponding to a user of the program, which invokes the method Oi. f j. We will take

this latter approach, because it allows more flexibility, which will be useful in the next

section. The user component for invoking Oi. f j can be specified as follows:

UserOi. f j

def

= (Act(〈πX′(µI)〉),rinit).User′
Oi. f j

User′
Oi. f j

def

=
∑

µ∈TM(Act((πX′′(µ))),⊤).Nil
(4.9)

where X′ is the order-preserving vector of Varsarg(Oi. f j) with respect to X, X′′ is the

order-preserving vector of Varsint(Oi. f j) with respect to X, and rinit is the rate at which

the user makes the initial call. TM is the set of terminal measures in the abstract

interpretation — µ ∈ TM iff there is a state µ ⊢ � ‖ · · · ‖ �. We define Nil to be a

livelocked PEPA process, which corresponds to an absorbing state in the underlying

Markov chain. This could be defined, for example, as Nil = (τ,r).Nil for any r > 0 ∈ R.

This leads us finally to a correct system equation for the PEPA model of our S

program, where the user invokes the method Oi. f j:

UserOi. f j
⊲⊳
∗

State(O1)⊲⊳
∗
· · · ⊲⊳

∗
State(OM) (4.10)

The only difference between the embedded DTMC underlying this PEPA model and

that of the abstract interpretation is that we have introduced an additional state, corre-

sponding to the user invoking the program.

Returning to our client-server example, we can now translate the projected abstract

interpretation for each method into a sequential PEPA component. To do this, we first

need to define the states and action types we will use. The sequential PEPA states are

shown in Figure 4.7, and the action types in Figure 4.8. We will take the internal and



100 Chapter 4. Stochastic Abstraction of Programs

State[C.B]1 = State(πC.B(µ1) ⊢ �)

State[C.B]2 = State(πC.B(µ11) ⊢ s1)

= State(πC.B(µ111) ⊢ s1)

= State(πC.B(µ112) ⊢ s1)

= State(πC.B(µ113) ⊢ s1)

State[C.B]3 = State(πC.B(µ1122) ⊢ �)

State[C.B]4 = State(πC.B(µ1111) ⊢ s2)

= State(πC.B(µ11111) ⊢ s2)

State[C.B]5 = State(πC.B(µ1121) ⊢ s2)

= State(πC.B(µ11211) ⊢ s2)

State[C.B]6 = State(πC.B(µ1131) ⊢ s2)

= State(πC.B(µ11311) ⊢ s2)

State[C.B]7 = State(πC.B(µ111111) ⊢ �)

State[C.B]8 = State(πC.B(µ112111) ⊢ �)

State[C.B]9 = State(πC.B(µ113111) ⊢ �)

State[S .P]1 = State(πS .P(µ11) ⊢ �)

State[S .P]2 = State(πS .P(µ111) ⊢ �)

State[S .P]3 = State(πS .P(µ112) ⊢ �)

State[S .P]4 = State(πS .P(µ113) ⊢ �)

State[S .B]1 = State(πS .B(µ1111) ⊢ �)

State[S .B]2 = State(πS .B(µ1121) ⊢ �)

State[S .B]3 = State(πS .B(µ1131) ⊢ �)

State[S .B]4 = State(πS .B(µ11111) ⊢ �)

State[S .B]5 = State(πS .B(µ11211) ⊢ �)

State[S .B]6 = State(πS .B(µ11311) ⊢ �)

Figure 4.7: PEPA states for the client-server example

call[C.B] = Act(πVarsarg(C.B)(µ1))

ret[C.B]1 = Act(πVarsint(C.B)(µ1122))

ret[C.B]2 = Act(πVarsint(C.B)(µ111111))

ret[C.B]3 = Act(πVarsint(C.B)(µ112111))

ret[C.B]4 = Act(πVarsint(C.B)(µ113111))

call[S .P] = Act(πVarsarg(S .P)(µ11))

ret[S .P]1 = Act(πVarsint(S .P)(µ111)))

ret[S .P]2 = Act(πVarsint(S .P)(µ112))

ret[S .P]3 = Act(πVarsint(S .P)(µ113))

call[S .B]1 = Act(πVarsarg(S .B)(µ1111))

call[S .B]2 = Act(πVarsarg(S .B)(µ1121))

call[S .B]3 = Act(πVarsarg(S .B)(µ1131))

ret[S .B]1 = Act(πVarsint(S .B)(µ11111))

ret[S .B]2 = Act(πVarsint(S .B)(µ11211))

ret[S .B]3 = Act(πVarsint(S .B)(µ11311))

Figure 4.8: PEPA action types for the client-server example
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external rates of the client and server to be as follows:

RI(Client) = 1 RI(Server) = 1

RE(Client) = 0 RE(Server) = 1
99

We are using a seemingly odd value for RE(Server) so that the rate we get when we

combine it with the internal rates is a round number — more specifically, activites that

involve an interaction with the server over the network are 100 times slower than those

that do not.

As a simple example of how we construct a PEPA sequential process definition, let

us consider the initial state of the client, State[C.B]1. This corresponds to the projected

state πC.B(µ1) ⊢ � in the abstract interpretation. If we consult Figure 4.6, we can see

that there is just one projected transition involving this state:

πC.B(µ1) ⊢ �
(πVarsarg(C.B)(µ1)),1,〈πVarsarg(S .P)(µ11)〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ πC.B(µ11) ⊢ s1

Given that Act((πVarsarg(C.B))(µ1)) = call[C.B], Act(〈πVarsarg(S .P)(µ11)〉) = call[S .P] and

State(πC.B(µ11) ⊢ s1) = State[C.B]2, we can construct a PEPA sequential process defi-

nition using Equation 4.7 as follows:

State[C.B]1
def

= (call[C.B],⊤).(call[S .P],0.01).State[C.B]2

Note that Equation 4.7 gives an explicit name for the intermediate state between car-

rying out the input and output activities. Because there is no choice after the input

activity, however, we leave this as an implicit state in the above. The rate 0.01 of the

output activity is calculated as:

R = p.
1

1
RI(Client)

+ 1
RE(Server)

= 1.
1

1+99
= 0.01

The remaining sequential process definitions for the client-server example are shown

in Figure 4.9. Notice that in Client.buy there are no definitions for State[C.B]3,

State[C.B]7, State[C.B]8, and State[C.B]9, since these correspond to terminal states

(the same is true for the terminal states of Server.getPrice and Server.buy). We

resolve this by constructing object-level sequential components according to Equa-

tion 4.8, which are shown in Figure 4.10. The changes relative to Figure 4.9 are high-

lighted in bold.

We can now finally give our system equation, corresponding to invoking the

Client.buy method:

UserC.B ⊲⊳
∗

State[C]⊲⊳
∗

State[S ]
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State[C.B]1
def
= (call[C.B],⊤).(call[S .P],0.01).State[C.B]2

State[C.B]2
def
= (ret[S .P]1,⊤).(call[S .B]1,0.01).State[C.B]4

+ (ret[S .P]2,⊤).State[C.B]′
2

+ (ret[S .P]3,⊤).(call[S .B]3,0.01).State[C.B]6

State[C.B]′
2

def
= (call[S .B]2,0.00476).State[C.B]5

+ (ret[C.B]1,0.00533).State[C.B]3

State[C.B]4
def
= (ret[S .B]1,⊤).(ret[C.B]2,1).State[C.B]7

State[C.B]5
def
= (ret[S .B]2,⊤).(ret[C.B]3,1).State[C.B]8

State[C.B]6
def
= (ret[S .B]3,⊤).(ret[C.B]4,1).State[C.B]9

State[S .P]1
def
= (call[S .P],⊤).State[S .P]′

1

State[S .P]′
1

def
= (ret[S .P]1,0.00203).State[S .P]2

+ (ret[S .P]2,0.00795).State[S .P]3

+ (ret[S .P]3,0.00002).State[S .P]4

State[S .B]1
def
= (call[S .B]1,⊤).(ret[S .B]1,0.01).State[S .B]4

State[S .B]2
def
= (call[S .B]2,⊤).(ret[S .B]2,0.01).State[S .B]5

State[S .B]3
def
= (call[S .B]3,⊤).(ret[S .B]3,0.01).State[S .B]6

Figure 4.9: Sequential process definitions for the client-server example

State[C]State[C]State[C]
def
= (call[C.B],⊤).(call[S .P],0.01).State[C.B]2

State[C.B]2
def
= (ret[S .P]1,⊤).(call[S .B]1,0.01).State[C.B]4

+ (ret[S .P]2,⊤).State[C.B]′
2

+ (ret[S .P]3,⊤).(call[S .B]3,0.01).State[C.B]6

State[C.B]′
2

def
= (call[S .B]2,0.00476).State[C.B]5

+ (ret[C.B]1,0.00533).State[C]State[C]State[C]

State[C.B]4
def
= (ret[S .B]1,⊤).(ret[C.B]2,1).State[C]State[C]State[C]

State[C.B]5
def
= (ret[S .B]2,⊤).(ret[C.B]3,1).State[C]State[C]State[C]

State[C.B]6
def
= (ret[S .B]3,⊤).(ret[C.B]4,1).State[C]State[C]State[C]

State[S ]State[S ]State[S ]
def
= (call[S .P],⊤).State[S .P]′

1

+ (call[S .B]1,⊤).(ret[S .B]1,0.01).State[S ]State[S ]State[S ]

+ (call[S .B]2,⊤).(ret[S .B]2,0.01).State[S ]State[S ]State[S ]

+ (call[S .B]3,⊤).(ret[S .B]3,0.01).State[S ]State[S ]State[S ]

State[S .P]′
1

def
= (ret[S .P]1,0.00203).State[S ]State[S ]State[S ]

+ (ret[S .P]2,0.00795).State[S ]State[S ]State[S ]

+ (ret[S .P]3,0.00002).State[S ]State[S ]State[S ]

Figure 4.10: Object-level sequential processes for the client-server example
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The UserC.B component is defined using Equation 4.9 as follows:

UserC.B
def

= (call[C.B],1).User′
C.B

User′
C.B

def

= (ret[C.B]1,⊤).Nil+ (ret[C.B]2,⊤).Nil

+ (ret[C.B]3,⊤).Nil+ (ret[C.B]4,⊤).Nil

4.6 Model-Level Transformations

We have so far seen how to construct a PEPA model of a S program that has a single

point of instantiation. Whilst this can allow us to answer some interesting questions

relating to properties such as response time, we might also want to analyse the model

in different contexts or environments. In this section, we will show how to do this by

performing some transformations at the level of the PEPA model, without needing to

modify our abstract interpretation and collecting semantics.

There are many ways in which we could transform a PEPA model of a S pro-

gram, but we will describe just three of them here for illustrative purposes:

1. To model the case when there are multiple instances of a resource — for exam-

ple, multiple clients or multiple servers — we can simply increase the number of

copies of the component corresponding to that resource in the system equation.

If we let ci be the number of copies of object Oi, and cU the number of users,

then a more general version of Equation 4.10 is:

UserOi. f j
[cU]⊲⊳

∗
State(O1)[c1]⊲⊳

∗
· · · ⊲⊳

∗
State(OM)[cM]

Here, we use the PEPA shorthand notation for aggregation, where C[n] is defined

(for n > 0):

C[1] = C

C[n] = C ‖C[n−1]

2. We have assumed so far that our program has a single instantiation. That is to

say, there is a single user that interacts with the program by a single call to one

of its methods. It is quite straightforward, however, to extend our approach to

deal with multiple different instantiations. To do so, we perform a separate ab-

stract interpretation for each instantiation, then generate the projected transitions

for each of them in the usual way. The only difference is that we need to take

the union of the sets of projected transitions when constructing the PEPA model.

This ensures that the sequential PEPA components include the behaviour of ev-

ery instantiation. We can then construct the system equation and user process(es)
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to give the behaviour we desire. For example, if we want to model a system

where multiple clients interact with a single server under different instantiations,

we could write a system equation of the form:

(

UserClient. f1 ‖ . . . ‖ UserClient. fn

)

⊲⊳
∗

State(Client)[n]⊲⊳
∗

State(Server)

3. The definition of the UserOi. f j
component given in Equation 4.9 leads to an ab-

sorbing state, which means that the model describes the transient behaviour of

a single instantiation of the system. We might instead be interested in the long

run behaviour, when many calls are made repeatedly by the user. We can model

this by a simple modification to the UserOi. f j
component — making it cyclic by

replacing the absorbing state Nil with a return to the state UserOi. f j
:

UserOi. f j

def

= (Act(〈πX′(µI)〉),rinit).User′
Oi. f j

User′
Oi. f j

def

=
∑

µ∈TM(Act((π′′
X

(µ))),⊤).UserOi. f j

From this, we can solve the underlying CTMC of the model to obtain steady

state measures such as throughput and utilisation.

All three of the above transformations are sound in the context of S, because objects

are immutable, and do not interfere with one another — they represent independent

resources. This means that creating multiple instances of a resource is reasonable,

since this corresponds to having multiple resources in the system, such as multiple

servers. When there are many users of the system, these also do not interfere with one

another, except to contend for shared resources. This corresponds to a strict notion

of contention, where only one user can interact with a resource at any one time. Note

that because the objects are immutable, no race conditions are introduced in doing this.

Furthermore, we cannot model a class-based language, where different instances of a

class have different states, since we cannot create or destroy objects.

We will now consider some examples of applying these transformations. As an

example of the third approach, let us examine our client-server example in the context

of the cyclic modification to the UserC.B process:

UserC.B
def

= (call[C.B],1).User′
C.B

User′
C.B

def

= (ret[C.B]1,⊤).UserC.B+ (ret[C.B]2,⊤).UserC.B

+ (ret[C.B]3,⊤).UserC.B+ (ret[C.B]4,⊤).UserC.B

Further to this, we can use the first and second approaches to construct a model with

multiple clients, but only one server, and with multiple instantiations. A system equa-

tion for such a scenario with n clients, with each client instantiating Client.buy, is
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Number of Clients (n) Server Utilisation

1 0.44028

2 0.62057

3 0.71637

4 0.77496

Figure 4.11: Utilisation of the server in the presence of multiple clients

as follows:

UserC.B[n]⊲⊳
∗

“State[C]”[n]⊲⊳
∗

“State[S ]”

We have placed State[C] and State[S ] in quotation marks to avoid confusion with the

notation for PEPA aggregation.

Now that we have a PEPA model, we can carry out various performance analyses

using the available tools [114, 48, 178]. We will not go into this in great detail here,

as we will discuss tool support for model checking PEPA models in some detail in

Chapter 7. Figure 4.11, however, illustrates a simple application of the steady state

solution of the model, showing the utilisation of the server with different numbers of

clients — this is the proportion of time that the server is not in the state State[S ].

4.7 Abstract Interpretation as an MDP

The approach we have taken throughout Sections 4.4 to 4.6 has been aimed at con-

structing a PEPA model that represents the behaviour of a S program. Whilst PEPA

is very useful as a performance modelling formalism, since it allows us to describe a

CTMC in a compositional manner, it is not the only language we might wish to map to.

In Section 4.4, we assigned a probability p♯(µ♯ ⊢ s→ µ′♯ ⊢ s′) to each transition between

states µ♯ ⊢ s and µ′♯ ⊢ s′ in the abstract interpretation of a method (see Equation 4.2).

These probabilities are approximate, however, in that we effectively re-normalise the

distribution after each transition.

To avoid this approximation, we could instead record an upper and lower bound

on the probability of each transition: [p
♯
L
, p
♯
U

]. This explicitly introduces non-

determinism, since we do not know the precise probability of the transition taking

place — only that it lies within these bounds. In this section, we will first describe how

to compute such bounds in the abstract interpretation, then give a brief discussion on
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how we might extend our collecting semantics in this situation.

To begin with, let us consider what happens if we only have an upper bound for

the probability of each transition out of a state. It is possible to infer some information

about the lower bounding probabilities simply by eliminating those distributions that

are impossible (i.e. do not sum to one). This process is known as delimiting [63], and

is illustrated in the following table, in a scenario with three possible successor states:

Next state µ
′♯
1
⊢ s′

1
µ
′♯
2
⊢ s′

2
µ
′♯
2
⊢ s′

3

Upper-bounding probability 0.3 0.6 0.3

Bounding probability [0,0.3] [0,0.6] [0,0.3]

Delimited bounding probability [0.1,0.3] [0.4,0.6] [0.1,0.3]

Taking the transition to µ
′♯
2
⊢ s′

2
as an example, since 0.6 is an upper bound of the transi-

tion probability, it must lie in the interval [0,0.6]. However, the maximum probability

of not taking this transition is 0.3+0.3 = 0.6, so we can refine the interval to [0.4,0.6].

If we have lower bounds on the transition probabilities, we can use delimiting to com-

pute upper bounds in the same way.

Let us now inductively calculate bounds for the transition probabilities in our ab-

stract interpretation, starting with transitions out of the initial state µ
♯
I
⊢ �O. f . Since

µ
♯
I
(RN) = 1, the upper-bounding probabilities from the initial state are given by:

p
♯
U

(µ
♯
I
⊢ �O. f → µ

′♯ ⊢ s′) =
µ′♯(RN)

µ
♯
I
(RN)

= µ′♯(RN)

The lower bounds can be calculated by delimiting.

For the probability of taking subsequent transitions, we can determine a lower

bound as follows, given that the state µ♯ ⊢ s is reached by a series of transitions of

the form µ
♯
I
⊢ �O. f

[p
♯
1,L
,p
♯
1,U

]

−−−−−−−−→ ·· ·
[p
♯
n,L
,p
♯
n,U

]

−−−−−−−−→ µ♯ ⊢ s. Recall that since the abstract inter-

pretation is a tree, there is only one such path to each state:

p
♯
L
(µ♯ ⊢ s→ µ′♯ ⊢ s′) =

1

µ♯(RN)





































p
♯
1,L

p
♯
2,L
· · · p

♯
n,L





































1−

∑

{µ′′♯,µ′♯ | ∃s′′. µ♯⊢s→µ′′♯⊢s′′ }

µ′♯(RN)

µ♯(RN)









































































We compute the upper bounds by delimiting. Intuitively, the above is the lower-

bounding probability of reaching the state µ′♯ ⊢ s′ from the initial state, divided by the

upper-bounding probability of reaching state µ♯ ⊢ s from the initial state. The reason

for computing the lower bound directly, and then using delimiting to obtain the upper
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bound, rather than vice versa, is to avoid potential numerical problems that could occur

if we divide by a lower bound of zero.

This approach results in an abstract Markov chain (a type of Markov Decision

Process), which contains non-determinism due to there being many possible distribu-

tions that satisfy the constraints on the transition probabilities out of a state. We could

build a collecting semantics on top of this with only minor modifications to the tech-

nique of Section 4.5, mapping to a suitable process algebra such as Interactive Markov

Chains (IMC) [87]. In IMC, rates and actions are separate prefixes, rather than being

combined to form activities as in PEPA. If multiple actions are enabled, the choice

between them is made non-deterministically. We could therefore use this to model the

non-determinism between the upper and lower probability bounds on the transitions in

the abstract interpretation.

On the basis of this discussion, it is important to realise that our choice of PEPA is

a design decision, since it is by no means the only reasonable choice. Note, however,

that abstract Markov chains are useful not only for modelling systems with inherent

non-determinism, but for abstracting purely stochastic models. This is an idea that we

will examine in some detail in the next two chapters — first in the context of Markov

chains, and then in the context of PEPA.





Chapter 5

Stochastic Abstraction of Markov

Chains

So far in this thesis, we have considered how to produce a Markovian model of a

program by abstracting its source code. Although this abstraction is feasible for the

class of programs we have considered, it will in general lead to models that are very

large. Despite this, we need to be able to analyse them if we are to obtain performance

information about the system. In this chapter and the next, we will explore the issues

surrounding the analysis of large Markovian models, and in particular those expressed

compositionally in the stochastic process algebra PEPA.

There are a number of different approaches to analysing Markov chains, which we

can classify as belonging to a spectrum. At one end of this spectrum are empirical ap-

proaches, such as simulation, and at the other end are analytical approaches1, such as

stochastic model checking. In between, there are approaches such as statistical model

checking, which use simulation to verify properties up to a certain confidence interval.

In fact, a similar spectrum is found in techniques for qualitative verification of soft-

ware, where we also have empirical approaches (testing) and analytical approaches

(formal verification).

There are advantages and disadvantages to both types of approach. Simulating a

Markov chain has the advantage that we can analyse large models, but it is expensive to

compute, since we need a sufficiently large sample to obtain accurate results. Stochas-

tic model checking is more efficient in this respect, and also more accurate, since we

can say for certain whether or not a property is satisfied. However, since we often need

1Here, we use ‘analytical’ to mean the systematic study of the entire state space of the Markov chain,

and not necessarily deriving a closed form expression for the solution of the chain.

109
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to explore the entire reachable state space, there are severe limits on the size of models

that we can analyse.

The state space explosion problem is a major issue for Markovian modelling in

general, and we spent some time discussing the background to this in Section 2.5.3.

This is particularly important given that we are concerned with highly parallel systems.

Recall that if we have a model that contains just six copies of a component with ten

states, its Markov chain could have as many as a million states. Because of this we

need techniques for reducing the size — namely, abstracting — such models, so that

they become small enough to analyse.

In Section 2.5.3 we discussed a number of approaches to tackling the state space

explosion problem of Markov chains, but in this chapter we will focus on state-based

abstraction. This involves combining, or aggregating, states in order to reduce the

size of the model. The problem with this approach is that in most cases we cannot

aggregate states and still end up with a Markov chain. Either we can try to construct a

Markov chain that approximates the original as best as possible, or we can look for one

that bounds the properties that we are interested in. We will consider two approaches

to this — abstract Markov chains and stochastic bounds — in Section 5.6.

When we use a compositional modelling formalism such as PEPA, we can eas-

ily and compactly describe models that have extremely large state spaces. However,

analysing such a model still requires its state space to be explored, which involves

constructing the underlying Markov chain. Whilst it is then possible to abstract this

Markov chain before analysing it, we run the risk that it may be too large to even

represent. It would therefore be advantageous to perform the abstraction composition-

ally — at the level of the PEPA model — so that we can deal with much larger models.

This will be the subject of the next chapter, but we first need to look at the existing

techniques for state-based abstraction of Markov chains.

Many interesting properties of Markov chains can be verified using stochastic

model checking. The basic problem is to determine whether a property p holds for

some state s in a modelM— namely, that:

M, s � p

Properties are typically expressed in a temporal logic, which allows us to reason about

not only the current state, but the future behaviour of the model. When the modelM

is a Markov chain, properties p are usually expressed in a logic such as Probabilistic

Computation Tree Logic (PCTL) [84] and PCTL* [15] (for discrete time), or Continu-
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ous Stochastic Logic (CSL) [16] (for continuous time).

In this chapter, we will begin by formally introducing discrete and continuous time

Markov chains, in Section 5.1, so as to establish the notation that will be used in this

chapter and the next. In Section 5.2 we will then present the logic CSL. Following

this, we will formally introduce the notion of state-based abstraction in Section 5.3,

and describe exact and approximate abstractions in Sections 5.4 and 5.5 respectively.

Finally, we will look at bounding abstractions in more detail — in particular, abstract

Markov chains and stochastic bounds — in Section 5.6.

5.1 Markov Chains in Discrete and Continuous Time

Before we look at abstracting and model checking Markov chains, we need to intro-

duce some basic concepts. Let us begin by recalling the definitions of discrete and

continuous time Markov chains, from Chapter 2:

Definition 2.5.1. A Discrete Time Markov Chain (DTMC) is a tuple (S ,π(0), P,L),

where S is a countable and non-empty set of states, π(0) : S → [0,1] is an initial prob-

ability distribution over the states, P : S ×S → [0,1] is a function describing the prob-

ability of transitioning between two states, and L : S × AP→ {tt,ff } is a labelling

function over a finite set of propositions AP.

Definition 2.5.2. A Continuous Time Markov Chain (CTMC) is a tuple (S ,π(0), P,r,L),

where S , π(0), P and L are defined as for a DTMC, and r : S →R≥0 assigns an exit rate

to each state. If r(s) = 0 then no transitions are possible from state s, and we require

that P(s, s) = 1, and P(s, s′) = 0 for all s′ , s.

A path σ in a DTMC is a (possibly infinite) sequence of states s0, s1, . . . ∈ S , such

that for all i < |σ| − 1, P(si, si+1) > 0. We write σ[i] = si, and Paths(s) to be the set

of paths such that σ[0] = s. A path σ in a CTMC is a (possibly infinite) alternating

sequence of states and durations s0, t0, s1, t1, . . ., such that si ∈ S , ti ∈ R>0, and for all

i < |σ| − 1, P(si, si+1) > 0 and r(si) > 0. As for a DTMC path, we write σ[i] = si, but

we additionally define δ(σ, i) = ti (the time spent in state si), and σ@t = σ[i], where i

is the smallest index such that t <
∑i

j=0 t j.

Often, a CTMC is described in terms of an infinitesimal generator matrix Q, where

Q(s, s′) (where s , s′) gives the rate of transitioning between states s and s. In

order for a Markov chain to be conservative, the diagonal elements are defined as
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Q(s, s) = −
∑

s′,s Q(s, s′). This matrix can be computed from the rate function r and the

probability transition matrix P as follows, where I is the identity matrix:

Q = r(P− I) = rP− rI

Here, we define the multiplication of a matrix M by a rate function r as follows:

(rM)(s, s′) = r(s)M(s, s′) (5.1)

Every CTMC conforming to Definition 2.5.2 has an embedded DTMC, which can

be obtained by simply discarding its rate function:

Definition 5.1.1. The embedded DTMC of a CTMCM = (S ,π(0), P,r,L) is defined as

Embed(M) = (S ,π(0), P,L).

This, however, alters the behaviour of the Markov chain by throwing away the relative

timing information of its states. In particular, the steady-state solution of the embedded

DTMC will in general be different to that of the original CTMC. We can avoid this

problem if we first uniformise the CTMC.

Definition 5.1.2. The uniformisation of a CTMCM = (S ,π(0), P,r,L), with uniformi-

sation rate λ ≥maxs∈S r(s) is given by Unif λ(M) = (S ,π(0), P,r,L), where r(s) = λ for

all s ∈ S , and:

P(s, s′) =















r(s)
λ P(s, s′) if s , s′

1−
r(s)
λ

∑

s′′,s P(s, s′′) otherwise

Essentially, uniformisation adjusts the CTMC by inserting self-loops, so that the exit

rate of every state is the same. This preserves weak bisimilarity [19], which intuitively

means that we preserve the relative rates of transitioning to different states.

5.2 The Continuous Stochastic Logic

To describe properties of a Markov chain, it is useful to have a logic for expressing

them. Since we are primarily interested in CTMCs, we will focus on Continuous

Stochastic Logic (CSL) [16], which is the most widely used logic in this setting. CSL

is a branching-time temporal logic, and is an extension of Computation Tree Logic

(CTL) [62]. It allows us to talk about the probability of a state satisfying some temporal

property, and the time interval in which the property must hold.
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Formulae in CSL are classified into state formulae Φ, and path formulae ϕ. The

former are properties of individual states in the Markov chain — for example, that

the steady state probability is greater than a certain value. The latter are properties

that hold of paths (sequences of states) through the chain — for example, that a state

property holds until some condition is met.

State formulae Φ are defined as follows, for E ∈ {≤,≥}, a ∈ AP and p ∈ [0,1]:

Φ ::= tt | a | Φ∧Φ | ¬Φ | SEp(Φ) | PEp(ϕ)

Path formulae ϕ have the following syntax, where I = [a,b] is a non-empty interval

over the reals, such that a,b ∈ R≥0∪{∞}, and a ≤ b:

ϕ ::= XI Φ | ΦUI Φ

Aside from atomic propositions and the standard Boolean connectives, there are three

interesting types of property that can be expressed in CSL:

• A steady state property — SEp(Φ) is satisfied if the steady state probability of

being in the set of states satisfying Φ is E p.

• A timed next property — PEp
(XIΦ) is satisfied of a state s if the probability that

we leave the state at time t ∈ I, and the next state satisfies Φ, is E p.

• A timed until property — PEp
(Φ1U

IΦ2) is satisfied of a state s if the probability

that we reach a state that satisfies Φ2 at a time t ∈ I, and we only pass through

states that satisfy Φ1 along the way, is E p.

As an example of a CSL timed until property, consider the following, for the set of

atomic propositions AP = {Error,Completed }:

P≥0.9(¬Error U[0,10] Completed)

This will be satisfied by all states from which there is a probability of at least 0.9

that we will reach a ‘Completed’ state within 10 time units, without encountering any

‘Error’ states before that point. Note that the unit of time is implicit to the model, and

is only relevant with respect to our interpretation of the results.

An extension to the basic CSL syntax, used for example in the model checker

PRISM [114], allows us to directly query the value of a steady state or path probability:

ΦT ::= S=?(Φ) | P=?(ϕ)
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s |= tt iff true

s |= a iff L(s,a)

s |= Φ1∧Φ2 iff s |= Φ1 and s |= Φ2

s |= ¬Φ iff s 6|= Φ

s |= SEp(Φ) iff ProbS(s,Φ)E p

s |= PEp(ϕ) iff ProbP(s,ϕ)E p

σ |= XIΦ iff σ[1] |= Φ and δ(σ,0) ∈ I

σ |= Φ1U
IΦ2 iff ∃t ∈ I. σ@t |= Φ2 and ∀t′ < t. σ@t′ |= Φ1

Figure 5.1: CSL semantics overM = (S , P,λ,L)

These are not state formulae in themselves, since they do not evaluate to a truth value,

but evaluate to the probability of the property holding of a state. This does not affect the

expressivity of CSL, but is of practical convenience for users of a model checker. The

semantics of CSL is shown in Figure 5.1, over a CTMCM = (S , P,λ,L). In defining

this, we make use of the following measures:

ProbS(s,Φ) = lim
t→∞

Pr{σ ∈ Paths(s) | σ@t |= Φ }

ProbP(s,ϕ) = Pr{σ ∈ Paths(s) | σ |= ϕ }

Formally, the above probability measure is defined as a Borel measure over sets of

paths — we will not go into technical details here, but instead refer the reader to Sec-

tion 2.3 of [17]. Importantly, it can be proven that the sets of paths in the above are

indeed measurable. In [17], a full model checking algorithm for CSL is also presented.

In the remainder of this chapter, we will look at techniques for abstracting CTMCs,

and many of these rely on the use of uniformisation. The uniformisation of a CTMC

is weakly bisimilar to the original CTMC, but it is not the case that weak bisimilarity

preserves all CSL properties. The problem is the timed next operator, and in fact all

properties in CSL\X — the subset of CSL without the next operator — are preserved

by weak bisimulation [19]. As a consequence, we will mostly consider just CSL\X

from here on.

5.3 Abstraction of Markov Chains

Due to the complexity of the systems that we are usually interested in modelling, it is

very common for Markov chains to be too large to analyse directly. In these circum-
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stances the generator matrix is too large to represent and then solve, and in the worst

case the state space itself may be too large to store. For such a Markov chain, if we

want to apply model checking rather than simulation, then we are forced to take one

(or both) of two fundamental approaches:

1. Structural decomposition of the Markov chain into components, such that a prop-

erty of the original can be expressed in terms of properties of the components.

The idea is one of divide and conquer — we can derive a property of the original

Markov chain just by looking at its components, which are exponentially smaller

in size.

2. Abstraction of the Markov chain, such that properties of the abstract chain are

related to those of the original (we will clarify what we mean by this shortly).

The key idea is to aggregate states of the Markov chain — in other words, we

choose a partitioning of the state space, and do not distinguish between states in

the same partition.

We use the word ‘property’ here in a general sense, since there are many different

analyses we may wish to carry out on a Markov chain. In our case, we are interested

in model checking CSL formulae on a CTMC, but we may alternatively be interested

in just the steady state solution of the Markov chain, or a transient property such as

the first passage time distribution between two states. In fact, as we will see later, we

analyse steady state properties in a different way to other CSL formulae, due to the

nature of the abstractions that we use.

There are a wide variety of structural decomposition techniques, which we gave

an overview of in Section 2.5.3. We will focus in this chapter on state-based abstrac-

tions of Markov chains, primarily because the techniques can be applied to any Markov

chain, and not just those of a particular structural form. The relationship between prop-

erties of the abstract and original Markov chain depends on the form of the abstraction,

which may be exact, approximate or bounding, as we shall see shortly. First, however,

we need to define precisely what we mean by an abstraction of a Markov chain.

Consider a Markov chain with a state space S . The basic idea of state space abstrac-

tion is to reduce S to a smaller abstract state space S ♯. To define this an abstraction,

we need a mapping between the concrete and abstract states:

Definition 5.3.1. An abstraction of a state space S is a pair (S ♯,α), where α : S → S ♯

is a surjective function that maps every concrete state to an abstract state. We define a

corresponding concretisation function, γ : S ♯→P(S ), as γ(s♯) = { s | α(s) = s♯ }.
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Since there are more concrete states than abstract, α defines an aggregation of the

concrete states. As an aside, let us define a pair of functions α′ : P(S )→ P(S ♯) and

γ′ : P(S ♯)→ P(S ), such that α′(S ′) =
⋃

s∈S ′{α(s) } and γ′(S ′♯) =
⋃

s♯∈S ′♯ γ(s♯). It is

straightforward to show that α′ and γ′ form a Galois connection, which illustrates how

this connects to the ideas of abstract interpretation from Chapter 4.

Consider two Markov chains,M andM♯, with state spaces S and S ♯ respectively,

such that (S ♯,α) is an abstraction of S . Then, considering the possible properties ofM

andM♯ to be the set of all CSL formulae given a fixed set AP of atomic propositions,

then we say that the abstraction is exact if for all states s ∈ S and all properties p:

M, s � p⇔M♯,α(s) � p (5.2)

This is a very strict requirement, and we will consider precisely what it means in Sec-

tion 5.4. Any property that holds of a concrete state s must also hold of its correspond-

ing abstract state α(s), and vice versa, which means that for the abstraction to be exact

we must only be able to distinguish between two states s and s′ if α(s) , α(s′).

Usually, when given an abstraction (S ♯,α) of a Markov chain M, it will not be

possible to construct an exact abstractionM♯. As an alternative, we could construct an

approximate abstraction, where Equation 5.2 holds for as many properties as possible,

rather than for all p. Unfortunately, it is difficult in general to reason about the error

in such approximate abstractions — namely, knowing in advance which properties

Equation 5.2 holds for. We will discuss this in more detail in Section 5.5.

If we want to build an abstraction so that we can reason about the error introduced,

a better approach is to construct a bounding abstraction — all properties that hold

of the abstraction should be guaranteed to hold of the original Markov chain, but not

necessarily vice versa. More formally, for all properties p and all states s ∈ S :

M, s � p⇐M♯,α(s) � p (5.3)

Note that ifM♯,α(s) 2 p andM♯,α(s) 2 ¬p, then we cannot say whether or not p holds

of state s in the concrete Markov chain. When constructing a bounding abstraction,

the challenge is to have as few properties that are ‘unknown’ as possible.

As an example, consider the CSL formulae S≥0.1(Φ) and S≤0.2(Φ), where Φ is an

atomic proposition and s � Φ⇔ α(s) � Φ. If these hold of the abstractionM♯, then we

know that the steady state probability of being in a state satisfying Φ is between 0.1

and 0.2. However, even if the actual steady state probability is 0.12, it may not be the

case that S≤0.15(Φ) holds of the abstraction.
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This illustrates the general principle of a bounding abstraction — that the abstract

properties are safe approximations. If a property holds of the abstraction then we can

be certain that it holds of the original, but if not then we cannot infer anything. For

instance, if our property is a probability, then in general our abstraction will give a

looser interval around this probability. It is important to note that the abstractionM♯

is not necessarily a Markov chain, and will in general be a Markov Decision Process

(MDP) [146]. In Section 5.6, we will introduce two different bounding abstractions —

abstract Markov chains and stochastic bounds.

5.4 Exact Abstraction of Markov Chains

Recall that an abstraction (S ♯,α) is exact for Markov chains M and M♯, if for all

properties p and all states s ∈ S :

M, s � p⇔M♯,α(s) � p

Intuitively, since this means that we cannot distinguish between states that map to the

same abstract state, it requires that the rate of transition between two abstract states

must be independent of the particular concrete state we are in. In practical terms, this

means that the memoryless property must still hold of the abstraction, and therefore it

must still be a Markov chain. This condition is called ordinary lumpability [108]:

Definition 5.4.1. An ordinary lumping of a DTMCM = (S ,π(0), P,L) is an abstraction

(S ♯,α) such that for all states s, s′ ∈ S , if α(s) = α(s′) then for all states s♯ ∈ S ♯:

∑

t∈γ(s♯)

P(s, t) =
∑

t∈γ(s♯)

P(s′, t)

Definition 5.4.2. An ordinary lumping of a CTMCM = (S ,π(0), P,r,L) is an abstrac-

tion (S ♯,α) such that for all states s, s′ ∈ S , if α(s) = α(s′) then for all states s♯ ∈ S ♯:

∑

t∈γ(s♯)

r(s)P(s, t) =
∑

t∈γ(s♯)

r(s′)P(s′, t)

If (S ♯,α) is an ordinary lumping, then it induces a new DTMC or CTMC over the state

space S ♯, since it allows us to completely define the probabilities and transition rates

between abstract states.

As an example, consider the Markov chain in Figure 5.2. Let us interpret it as a

uniformised CTMC, where all states have an exit rate of 1 (i.e. r(s) = 1 for all s),
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Figure 5.2: Ordinary lumpability of a Markov chain

and the transition probabilities are as given. For all states labelled A, the probability

of moving to a state labelled B is 0.4, and that of moving to a state labelled A is 0.6.

Similarly, every B state has the same probability distribution over moving to an A or a

B state (0.5 in both cases). Since this satisfies the condition for ordinary lumpability,

we can aggregate the CTMC to one that has only two states: A and B.

If we solve this CTMC, then the steady state probability of being in an abstract state

(A or B) will be equal to the sum of the probabilities of being in each of its constituent

states. In other words, solving the aggregated CTMC is equivalent to aggregating the

solution of the original CTMC.

Ordinary lumpability ensures that an aggregated stochastic process is Markovian

for all initial distributions over the state space. If this condition is relaxed so that

only some initial distributions induce a Markov chain, then we have the notion of weak

lumpability [108]. A special case of weak lumpability is exact lumpability [158], where

the rate of transition into each state in the same partition is the same. More formally:

Definition 5.4.3. An exact lumping of a DTMC M = (S ,π(0), P,L) is an abstraction

(S ♯,α) such that for all states s, s′ ∈ S , if α(s) = α(s′) then for all states s♯ ∈ S ♯:
∑

t∈γ(s♯)

P(t, s) =
∑

t∈γ(s♯)

P(t, s′)

Definition 5.4.4. An exact lumping of a CTMCM = (S ,π(0), P,r,L) is an abstraction

(S ♯,α) such that for all states s, s′ ∈ S , if α(s) = α(s′) then for all states s♯ ∈ S ♯:
∑

t∈γ(s♯)

r(t)P(t, s) =
∑

t∈γ(s♯)

r(t)P(t, s′)
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This notion of lumpability ensures that the relative probabilities of being in the states

of a partition are both determined, and fixed throughout the evolution of the Markov

chain. However, we must start in an initial state that satisfies these relative distribu-

tions, in order to satisfy the Markov property. If a Markov chain is both ordinarily and

exactly lumpable, it is said to be strictly lumpable [158].

For the remainder of this chapter, we will only consider ordinary lumpability, and

therefore refer to this as lumpability without qualification. A useful consequence of

ordinary lumpability is that it preserves all CSL properties [16]2, assuming that all

states in the same partition satisfy the same atomic propositions.

5.5 Approximate Abstraction of Markov Chains

The problem with ordinary lumpability is that it only arises routinely when a Markov

chain has a particular structure — for example, if it describes a system containing

multiple copies of the same component in parallel. In general, we cannot rely on our

model exhibiting lumpability, but since we are usually interested in combining states

that have similar behaviour, it is not unreasonable that we might be close to being

lumpable. If we formalise this idea, we arrive at the notion of quasi-lumpability [72]:

Definition 5.5.1. A DTMC M = (S ,π(0), P,L) is quasi-lumpable with respect to an

abstraction (S ♯,α), if the transition matrix P can be written as P = P−+ Pǫ such that:

1. P− is a component-wise lower bound of P, and is non-negative.

2. M− = (S ,π(0), P−,L) is ordinarily lumpable with respect to (S ♯,α).

3. No element in Pǫ is greater than some small value ǫ.

Since P− and Pǫ may not be unique, we choose the alternative such that ‖Pǫ‖∞ is

minimised3.

This definition can be extended to a CTMC, but is typically done so in terms of the

infinitesimal generator matrix Q, rather than the separate rate function and probabilistic

transition matrix as in Definition 5.4.2.

2Theorem 3 of [16] shows that two F-bisimilar states in a CTMC satisfy the same set F of CSL

properties, and the definition of F-bisimilarity coincides with ordinary lumping equivalence.
3The infinity norm ‖P‖∞ of a matrix P is defined to be the maximum absolute row sum of the matrix.
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Quasi-lumpability can be used as approximate abstraction, if we make P− into a

stochastic matrix by adding probability mass to the diagonal elements — hence pre-

serving lumpability. If we do this, however, it becomes very difficult to reason about

the error that we introduce — for both steady state and transient measures. There are

more intelligent approaches that can bound the steady state probabilities for quasi-

lumpable Markov chains [72], but these are only useful for Markov chains that have a

particular structure, such as being nearly-completely decomposable (NCD) [57]. We

would therefore like to use abstractions that can be applied more generally, which leads

us to the techniques in the next section.

5.6 Bounding Abstraction of Markov Chains

As we have seen, most abstractions of a Markov chain are not ordinarily lumpable,

so to avoid using approximate methods we need to find a way to safely bound the

properties that we are interested in. To this end, we will consider two approaches to

constructing a bounding abstraction of a Markov chain:

1. Determine the maximum and minimum possible transition rates between the

abstract states. This defines not a Markov chain, but a set of Markov chains, on

which we can perform model checking using a three-valued version of CSL (i.e.

it has truth values of true (tt), false (ff) and maybe (?)). This is the approach

of abstract — or interval — Markov chains [63, 102]. Note that there are also

similar approaches using Markov decision processes, where we make a non-

deterministic choice between which concrete state an abstract state is in, rather

than having bounds on the rate of each transition [56].

2. Modify the original CTMC by altering the rates so that the abstraction becomes

lumpable. In order for this to be useful, we ensure that the modification yields

an upper (or lower) bound to the property that we are interested in. This is the

approach of stochastic bounds [174]. Note that there has been related work in

producing purely probabilistic abstractions of Markov chains and Markov deci-

sion processes [43].

We will describe these approaches in Section 5.6.1 and Section 5.6.2 respectively. In

particular, abstract Markov chains are useful for model checking the transient (path)

properties of CSL, while stochastic bounds can be used for the analysis of monotone

properties, such as the steady state distribution.
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Figure 5.3: A non-lumpable abstraction of a Markov chain

5.6.1 Abstract Markov Chains

Given a CTMCM and an abstraction (S ♯,α), we have seen that this does not give rise

to a Markov chain in general. This is because the probability of making a transition

between two abstract states (or the rate of the transition, in the case of a CTMC) varies,

depending on which concrete state we were in. As an example, consider Figure 5.3, in

which we have slightly modified the transition probabilities of the lumpable Markov

chain from Figure 5.2. Here, the probability of moving from an A state to a B state

depends on which particular A state we are in, and can be either 0.4 or 0.5, hence we

cannot construct an aggregate CTMC.

Instead, if we label the transitions by an interval of probabilities that are possible,

this gives rise to an abstract Markov chain. The notion of an abstract DTMC was

introduced in [102, 63], and extended to continuous time in [105] by means of uni-

formisation. The idea is closely related to Markov Decision Processes (MDPs) [146],

in that the transitions have both a probabilistic and a non-deterministic component. An

abstract CTMC is defined as follows (as per [105]):

Definition 5.6.1. An abstract CTMC is a tuple (S ♯,π(0)♯, PL, PU ,λ,L♯), where S ♯ is a

finite non-empty set of states, π(0)♯ : S ♯ → [0,1] is the initial probability distribution

over the states, and PL, PU : S ♯ × S ♯→ [0,1] are sub-stochastic and super-stochastic

matrices respectively, such that for all states s, s′ ∈ S ♯, PL(s, s′) ≤ PU(s, s′). λ is the

uniformisation constant, denoting the exit rate for every state, and we have a labelling

function L♯ : S ♯×AP→ {tt,ff,? }.
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Note that the labelling function contains a third truth assignment, ‘?’, which signifies

uncertainty (some of the concrete states satisfy the property, but some do not). The

truth assignments naturally form a partial order relating to the information they pro-

vide: ff ⊏? and tt ⊏?. The abstract Boolean operators ¬♯ and ∧♯ are defined as:

¬♯

tt ff

ff tt

? ?

∧♯ tt ff ?

tt tt ff ?

ff ff ff ff

? ? ff ?

Note that we could arrive at this by taking the truth values to be elements of

P({tt,ff }) \ { }, where ? corresponds to {tt,ff }, ⊏ corresponds to ⊂, and we define

¬S = {¬s | s ∈ S }.

The semantics of three-valued CSL over an abstract CTMC is shown in Figure 5.4.

This makes use of the following measures, which are analogues of those used in the

two-valued semantics:

Prob
♯
S

(s,Φ) = lim
t→∞

[

Pr{σ ∈ Paths(s) | JΦK(σ@t) = tt },

1−Pr{σ ∈ Paths(s) | JΦK(σ@t) = ff }
]

Prob
♯
P

(s,ϕ) =
[

Pr{σ ∈ Paths(s) | JϕK(σ) = tt },

1−Pr{σ ∈ Paths(s) | JϕK(σ) = ff }
]

TestEp([pL, pU]) =































tt if pE pL and pE pU

ff if ¬(pE pL) and ¬(pE pU)

? otherwise

Our definition of an abstract CTMC induces a natural partial order.

Definition 5.6.2. IfM
♯
1
= (S

♯
1
,π

(0)♯
1
, PL

1
, PU

1
,λ1,L

♯
1
) andM

♯
2
= (S

♯
2
,π

(0)♯
2
, PL

2
, PU

2
,λ2,L

♯
2
),

then we say thatM
♯
1
≤M

♯
2

if:

1. S
♯
1
= S

♯
2
, π

(0)♯
1
= π

(0)♯
2

, λ1 = λ2 and L
♯
1
= L
♯
2
.

2. For all s, s′ ∈ S
♯
1
: PL

2
(s, s′) ≤ PL

1
(s, s′) ≤ PU

1
(s, s′) ≤ PU

2
(s, s′).

Intuitively, M
♯
2

is an over-approximation of M
♯
1
, since a greater range of transition

probabilities are possible. Note that this is strictly coarser than a simulation order-

ing, since we can only compare two abstract CTMCs that have have the same state

space, uniformisation constant, and initial distribution. It has the advantage, however,

of being easy to compute, and is sufficient for our purposes since we only construct



5.6. Bounding Abstraction of Markov Chains 123

JttK(s) = tt

JaK(s) = L♯(s,a)

JΦ1∧Φ2K(s) = JΦ1K(s)∧♯ JΦ2K(s)

J¬ΦK(s) = ¬♯JΦ1K(s)

JSEp(Φ)K(s) = TestEp(Prob
♯
S

(s,Φ))

JPEp(ϕ)K(s) = TestEp(Prob
♯
P

(s,ϕ))

JXIΦK(σ) =















JΦK(σ[1]) if δ(σ,0) ∈ I

ff otherwise

JΦ1U
IΦ2K(σ) =



























































tt if ∃t ∈ I. JΦ2K(σ@t) = tt

and ∀t′ < t. JΦ1K(σ@t′) = tt

ff if ∀t ∈ I. JΦ2K(σ@t) = ff

or ∃t′ < t. JΦ1K(σ@t′) = ff

? otherwise

Figure 5.4: Three-valued CSL semantics overM♯ = (S ♯,π(0)♯, PL, PU ,λ,L♯)

abstractions that satisfy the above conditions — i.e. we do not need to compare two

arbitrary abstract CTMCs. Importantly,M
♯
1
≤M

♯
2

implies thatM
♯
2

can simulateM
♯
1
.

If we have a uniform CTMCM and an abstraction (S ♯,α), then we can uniquely

define an abstract CTMC (the closest abstraction) as follows:

Definition 5.6.3. The abstract CTMC M♯ = Abs(S ♯,α)(M) induced by an abstraction

(S ♯,α) on a uniform CTMC M = (S ,π(0), P,r,L) is defined as follows. Since M is

uniformised, there is a constant λ such that r(s) = λ for all s ∈ S :

Abs(S ♯,α)(M) = (S ♯,π(0)♯, PL, PU ,λ,L♯)

where:

π
(0)♯(s♯) =

∑

s∈γ(s♯)

π
(0)(s)

PL(s
♯
1
, s
♯
2
) = min

s1∈γ(s
♯
1
)

∑

s2∈γ(s
♯
2
)

P(s1, s2)

PU(s
♯
1
, s
♯
2
) = max

s1∈γ(s
♯
1
)

∑

s2∈γ(s
♯
2
)

P(s1, s2)

L♯(s♯,a) =































tt if ∀s ∈ γ(s♯). L(s,a) = tt

ff if ∀s ∈ γ(s♯). L(s,a) = ff

? otherwise
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In [105], a semantics for CSL under the above three-valued logic is given, along

with a model checking algorithm for CSL\X, without the steady state operator. We

need to exclude the timed next operator, because its validity is not preserved after

uniformisation of the CTMC. An algorithm for model checking abstract Markov chains

is given in [18, 105], and we have implemented this in our tool, which we describe in

Chapter 7. However, since the focus of this thesis is on techniques for abstraction,

rather than model checking techniques, we will not describe the algorithms here.

5.6.2 Stochastic Bounding of Markov Chains

An abstract Markov chain can be used as a bounding abstraction of a Markov chain,

if we are interested in transient properties, such as a CSL path property. Since the

transitions have intervals of probabilities, however, we cannot compute a steady state

distribution for an abstract Markov chain. To bound steady state probabilities, there

are two fundamental approaches we could take. The first is to look at algorithms for

bounding long-run averages of an abstract Markov chain, in the style of De Alfaro [7].

The second, which we consider, is to construct upper- and lower-bounding Markov

chains, such that their steady state distributions bound that of the original Markov

chain. Importantly, by ensuring that these bounds are lumpable, we can reduce the size

of the Markov chains to solve. To do this, we need a notion of stochastic ordering of

probability distributions.

There exist a number of stochastic orderings, for which Stoyan’s book [174] is a

detailed reference, but for our purposes we will use only the strong stochastic order,

which we will denote ≤st.

Definition 5.6.4. Let X and Y be random variables on a partially ordered space (S ,≺).

We say that X is less than Y in the strong stochastic order, namely X ≤st Y, if for all

non-decreasing functions f , E[ f (X)] ≤ E[ f (Y)].

Note that (S ,≺) can be any partial order, and we will see some specific examples in

the next chapter. This definition is equivalent to saying that Pr(X ≻ s) ≤ Pr(Y ≻ s), for

all s ∈ S . In particular, since we can describe a discrete random variable in terms of

a vector representation of its probability distribution, a more practical definition is the

following:

Definition 5.6.5. Let X be a random variable over (S ,≺), and x be a vector of length

|S |, such that Pr(X ≻ s) =
∑

s′≻s x(s′). Let y be defined similarly for a random variable
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Y over (S ,≺). We say that x ≤st y if for all s ∈ S :

∑

s′≻s

x(s′) ≤
∑

s′≻s

y(s′)

It follows that x ≤st y implies that X ≤st Y , and so we will describe random variables in

terms of probability vectors from here on.

The strong stochastic order extends naturally to Markov chains. The following

definition applies in both the discrete and continuous time settings:

Definition 5.6.6. Let {Xt } and {Yt } be Markov chains over the partially ordered state

space (S ,≺). Then {Xt } ≤st {Yt } if for all t, Xt ≤st Yt.

This is the classical definition, where we consider a Markov chain to be a set of ran-

dom variables, indexed by the time t — two Markov chains are comparable if their

probability distributions over (S ,≺) are comparable at all times t. This definition of

a Markov chain, however, differs from that in Section 5.1, and so to be practical, we

need to define the strong stochastic order in terms of the transition matrices of Markov

chains.

To do this, we need to introduce two important properties of stochastic matrices:

comparability and monotonicity. We will assume that the state space of a matrix P (i.e.

its row and column indices) is a partially ordered set (S P,≺P), and we will omit the

subscript when it is clear from context. Furthermore, we will use the notation P(i,∗)

to denote row i of matrix P, which is itself a row vector.

Definition 5.6.7. Two stochastic matrices, P and P′, are comparable such that P ≤st

P′, if they share the same state space (S ,≺), and for all s ∈ S , P(s,∗) ≤st P′(s,∗).

Definition 5.6.8. An |S | × |S | stochastic matrix P is monotone if for all row vectors u

and v of length |S |, u ≤st v implies that uP ≤st vP. Equivalently, P is monotone if for

all s, s′ ∈ S , s ≺ s′⇒ P(s,∗) ≤st P(s′,∗).

Note that comparability and monotonicity are quite different concepts. Intuitively,

comparability is about comparing the same row in two different matrices, whereas

monotonicity is about comparing two different rows in the same matrix.

Using these notions of stochastic comparison and monotonicity, we can now pro-

vide an alternative definition of the strong stochastic order on DTMCs:

Definition 5.6.9. Consider the DTMCsM1 = (S ,π
(0)

1
, P1,L) andM2 = (S ,π

(0)

2
, P2,L).

We say thatM1 ≤stM2 if:
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1. π
(0)

1
≤st π

(0)

2
.

2. P1 ≤st P2.

3. P1 or P2 is monotone.

To motivate why the third condition is required, let us consider a small example where

two stochastic matrices are comparable, but neither is monotone. We will assume

a totally ordered state space, given by the indices of the states in the matrix. If we

start with the same initial distribution, then we quickly find a point in time where the

distributions over the states are not comparable:

P :































0 1 0

0 0 1

1
2

0 1
2































≤st































0 1
2

1
2

0 0 1

1
2

0 1
2































π
(0) :

[

1 0 0
]

≤st

[

1 0 0
]

π
(1) :

[

0 1 0
]

≤st

[

0 1
2

1
2

]

π
(2) :

[

0 0 1
]

6≤st

[

1
4

0 3
4

]

Given this definition for stochastic comparason of DTMCs, we can also compare two

CTMCs — by uniformising them and comparing their embedded DTMCs:

Definition 5.6.10. Two CTMCs M1 = (S ,π
(0)

1
, P1,r1,L) and M2 = (S ,π

(0)

2
, P2,r2,L)

are comparable such thatM1 ≤stM2 if for all λ ≥max(maxs∈S r1(s),maxs∈S r2(s)):

Embed(Unif λ(M1)) ≤st Embed(Unif λ(M2))

Since stochastic comparison of CTMCs is defined in terms of stochastic comparison of

DTMCs, we need only consider the latter, without loss of generality, for the remainder

of this section. The need to uniformise CTMCs, however, will become an important

consideration when we apply these techniques compositionally to PEPA models in

Section 6.4.

For stochastic bounds to be of practical use, we need algorithms to construct mono-

tone upper and lower-bounding matrices, given the probability transition matrix of a

DTMC. Furthermore, not only do we need them to be bounding, but they must be

lumpable with respect to the desired abstraction.

In [69], an algorithm is given that derives an irreducible and lumpable bounding

DTMC from an initial DTMC, assuming that it has a totally-ordered state space. Recall

that irreducibility means that the DTMC has a strongly connected state space. We will

describe this in two stages — first dealing with the steps needed to ensure a monotone

and irreducible upper bound, and secondly with how to ensure that this is lumpable

(with respect to a partitioning of the states). The first stage begins with the algorithm
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Figure 5.5: Algorithm for computing a monotone upper bound of a stochastic matrix

by Abu-Amsha and Vincent [5], which finds a monotone upper-bounding transition

matrix for a DTMC. The idea is to observe that, for two stochastic matrices P and

R of the same dimensions, the following inequalities must hold if P ≤st R and R is

monotone:

1. For all i, P(i,∗) ≤st R(i,∗).

2. For all i, R(i,∗) ≤st R(i+1,∗).

To arrive at the basic algorithm, we set the first row of R equal to that of P (R(1,∗) =

P(1,∗)), and then set each subsequent row according to the maximum of the left-hand

sides of the above inequalities. Since the ordering on the states is total, P(i,∗)≤st R(i,∗)

means that
∑n

k= j
P(i,k) ≤

∑n
k= j

R(i,k), for all j. This leads to the following definition

of R:

R(i, j) =max



















n
∑

k= j

R(i−1,k),

n
∑

k= j

P(i,k)



















−

n
∑

k= j+1

R(i,k)

We can iteratively construct the matrix R based on the above equation, starting with

the first row and the last column, and iterating down the rows before moving onto the

next column. This is illustrated in Figure 5.5, which shows how we take the maximum

of the sum of probabilities for the same row in the original matrix and the previous row

in the upper-bounding matrix. Iterating in this order ensures that each sum is known

when we need it.

To compute a lower-bounding matrix, we can use the following, setting the last row

of R equal to that of P and reversing the order of iteration over the rows:

R(i, j) =min



















j
∑

k=0

R(i+1,k),

j
∑

k=0

P(i,k)



















−

j−1
∑

k=0

R(i,k)
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From here on, we will consider only the algorithm for the upper-bounding matrix, as

that for the lower-bounding matrix is similar.

Unfortunately, this basic algorithm does not guarantee that if P is irreducible then

R will also be, since it is possible to delete transitions. Fourneau et al. [69] address

this by a slight modification to the algorithm, so that we avoid unnecessarily deleting

transitions. In particular, if the basic algorithm gives R(i, j) = 0, and we have not yet

consumed all of the probability mass for that row (
∑n

k= j+1 R(i,k) < 1), then in the case

that P(i, j) > 0 (i.e. we would delete a transition) we add a small value (ǫ — which is

a parameter of the algorithm — times the remaining probability mass) to the element,

which avoids deleting it. We do the same if these conditions hold when i = j− 1 —

i.e. we are to the right of a diagonal element, even if the original had zero probability.

This avoids placing all of the probability mass on the diagonal, which would result in

an absorbing state. The stochastic bounding algorithm, including this modification, is

shown in Algorithm 1.

Algorithm 1 Computation of an upper-bounding, monotone and irreducible stochastic

matrix (from [69])

for j← 1 to n do

R(1, j)← P(1, j)

end for

for i← 2 to n do

R(i,n)←max{R(i−1,n), P(i,n) }

end for

for j← n−1 to 1 do

for i← 1 to n do

R(i, j)←max



















0,max



















n
∑

k= j

R(i−1,k),

n
∑

k= j

P(i,k)



















−

n
∑

k= j+1

R(i,k)



















if R(i, j)← 0∧

n
∑

k= j+1

R(i,k) < 1∧ (P(i, j) > 0∨ i = j−1) then

R(i, j)← ǫ ×



















1−

n
∑

k= j+1

R(i,k)



















end if

end for

end for

To produce an upper-bounding matrix that is not only monotone and irreducible,



5.6. Bounding Abstraction of Markov Chains 129

but describes a lumpable DTMC with respect to a given partitioning, the algorithm

of [69] has a further step. It is assumed that all states in a given partition are adjacent to

one another in the total ordering on the state space. This step, known as normalisation,

ensures that all the row sums in the same partition are the same, by adding probability

mass to the lowest-valued row in the state space ordering. This preserves monotonicity,

and always results in a stochastic matrix. Algorithm 2 performs this normalisation for

a given partition k, assuming that there are K partitions in total, and is called after

filling in the group of columns corresponding to partition k, where b(k) is the first state

in partition k, and e(k) is the last state.

Algorithm 2 Normalisation of a stochastic bounding matrix, to ensure lumpability

(from [69])

for y← 1 to K do

sum←

e(k)
∑

j=b(k)

R(e(y), j)

for i← b(y) to e(y)−1 do

R(i,b(k))← sum−

e(k)
∑

j=b(k)+1

R(i, j)

end for

end for

The basic properties of this stochastic bounding algorithm, given by Algorithms 1

and 2, are as follows, given a stochastic matrix P as input, and an output matrix R

generated by the algorithm [69]:

1. If P is irreducible, P(1,1) > 0, and every row of the lower triangle of P has at

least one positive element, then R is irreducible.

2. R is monotone, and P ≤st R, under the ordering of the indices of the matrices.

3. Given a partitioning of the state space, such that all the states in the same parti-

tion have adjacent indices, the DTMC described by R is lumpable with respect

to this partitioning.

We can now state some basic complexity results for the algorithm [69]:

Property 5.6.11. The worst case time complexity for Fourneau’s algorithm is O(n2),

where n is the size of the state space (i.e. P and R are n× n matrices). The space

complexity is O(n), in terms of the memory required in computing the bound (but not

to store the result).
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Intuitively, this is because we can keep a running count of the row sums as we iterate

through the matrix, to avoid having to re-compute them for every element of the matrix.

The memory requirement is O(n) because we need two vectors of length n to store these

sums — for the current row of P, and the previous row of R.

The main disadvantage of this algorithm is that it only applies when the state space

is totally ordered — meaning that we might not be able to obtain bounds that are as

tight as those possible using a weaker, partial order. It is possible to extend any partial

order to a total order, but since this will result in a stronger set of constraints, we

should expect to lose precision in the bounds. We will see in the next chapter — in

Section 6.4 — how to modify this algorithm to work with a simple class of partial

orders, so as to avoid this problem.

It is difficult to formally characterise the types of DTMC for which this algorithm

works well — for example, the same model, with two different orderings of its state

space, could result in bounds with very different precisions. We would expect a DTMC

that is almost monotone, and almost lumpable to yield a better bound than one that is

far from satisfying these properties, but there are no results that quantify this relation-

ship formally. Certainly, manual applications of stochastic bounds can yield better

results than the use of this algorithm, since they can be tailored to exploit particular

structures in the model. The motivation in [69] was to present a general algorithm, that

could be used in future to gain some insight into the types of model for which stochas-

tic bounds works well, and to find heuristics for choosing a state space ordering.

In this chapter we have examined several state-based abstraction techniques for

Markov chains. In particular, we looked at abstract Markov chains as an abstraction

for transient properties of a Markov chain (namely, time-bounded reachability), and

stochastic bounds as an abstraction for steady state properties. This is not to say that

these techniques must be used exclusively for these purposes. Certainly, it should be

possible to extend the technique of abstract Markov chains to bound long-run averages,

using the techniques of [7], and stochastic bounds can be applied to any monotone

property, meaning that these techniques could be adapted to time-bounded reachability.

We presented the techniques in this chapter in terms of Markov chains, but in prac-

tice we tend to use higher-level modelling formalisms that are more structured. In

order to take advantage of this structure, we will look in the next chapter at extending

these methods so that they can be applied compositionally to PEPA models. This will

then lead to an implementation of a model checker and abstraction engine for PEPA,

which we will demonstrate in Chapter 7.



Chapter 6

Stochastic Abstraction of PEPA

Models

Stochastic abstraction techniques can be powerful when analysing large Markovian

models, since they allow us to reduce a model to one that is small enough to analyse,

whilst retaining information about the properties we are interested in. In the previ-

ous chapter, we introduced two particular techniques — abstract Markov chains and

stochastic bounds — which allow us to reason about transient and steady state prop-

erties of Markov chains respectively. However, since these operate on the state space

of the underlying Markov chain, they are limited in practice by the size of state space

that we can represent.

When we describe a Markov chain using a compositional language such as PEPA,

it leads to a concise description, even though the underlying state space might be enor-

mous. In an ideal situation, we would like to analyse such models compositionally, so

that we never have to deal with this state space explicitly. Yet unlike in the qualitative

world, where there are many static analysis techniques for compositionally analysing

programs [133], the availability of such techniques for stochastic systems is limited.

Whilst there has been some work regarding compositional model checking [23], this

relies on the model displaying a Boucherie product form structure [32], which is a very

restrictive requirement in practice.

In this chapter, rather than looking at compositional analysis, we will instead de-

velop techniques for compositional abstraction, in the context of PEPA models. In par-

ticular, we will show how to apply both abstract Markov chains and stochastic bounds

compositionally, by making use of a Kronecker representation for PEPA [93]. By

combining both techniques, we can model check all properties that can be specified

131
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in CSL/X, including both path and steady state formulae. The aim of this chapter is

to establish and prove the safety of our abstractions — in the next chapter, we will

describe a tool that we have developed, which implements these techniques.

We will begin this chapter with Section 6.1, where we show how the underlying

Markov chain of a PEPA model can be described compositionally, in a Kronecker form.

We will then describe our approach to abstracting and model checking PEPA models

in Section 6.2, and show how to apply abstract Markov chains and stochastic bounds

to PEPA in Sections 6.3 and 6.4 respectively. Proofs of the theorems in this chapter

can be found in Appendix D.

6.1 Kronecker Representation of PEPA Models

Whilst in the previous chapter we looked at how to abstract Markov chains directly,

the aim of this chapter is to present a compositional approach to abstraction. In our

case, we will base this on the stochastic process algebra PEPA, which we introduced

in Section 2.5.2. To apply the abstraction techniques of the previous chapter composi-

tionally, we will first introduce a compositional representation for the generator matrix

of the CTMC induced by PEPA’s semantics. This approach is based on combining

matrices using tensor, or Kronecker operators (see Appendix C) — this was first pre-

sented in [142] in the context of stochastic automata networks, and was first applied to

stochastic process algebra in [35]. It was applied to PEPA in [93].

If we consider the system equation of a PEPA model, it has the following form:

C1 ⊲⊳
L1
· · · ⊲⊳

LN−1
CN (6.1)

Here, we ignore the hiding operator C/L without loss of generality, since it is always

possible to rename action types to avoid name conflicts between components. Note

that the cooperation combinator is not associative, however, which is an issue that we

will return to in a moment.

The semantics of PEPA allows us to induce a CTMC from the system equation of

a PEPA model. If we look at a fragment of the system equation, we can also induce a

CTMC following the PEPA semantics — but only if the fragment cannot perform any

passive activities. In order to describe the behaviour of a fragment that can perform

passive activities, we will generalise the notion of a generator matrix. In particular, if

we consider a sequential component Ci, having a state space Si = ds(Ci), we can write
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a ‘partial’ generator matrix for the component as follows:

Qi =
∑

a∈Act(Ci)

Qi,a =
∑

a∈Act(Ci)

ri,a

(

Pi,a− I|Si|

)

(6.2)

Here, each Qi,a is an |Si|× |Si|matrix that describes the behaviour of Ci due to activities

of type a. Importantly, the elements of Qi,a come from the set R∪ (R× {⊤}) — i.e.

they correspond to either an active rate (in R), or a passive rate (in R×{⊤}). We define

addition and multiplication over these elements as follows, for r, s ∈ R:

+ s (s,⊤)

r r+ s r

(r,⊤) s (r+ s,⊤)

× s (s,⊤)

r rs (rs,⊤)

(r,⊤) (rs,⊤) (rs,⊤)

We further decompose each Qi,a into a rate function ri,a and a probability transition

matrix Pi,a — ri,a : Si→ R≥0∪{⊤} gives the rate of action type a for each state in Si,

Pi,a gives the next-state transition probabilities conditional on performing an activity

of type a, and I|Si| is the |Si| × |Si| identity matrix. If, for a state s, ri,a(s) = 0, we write

Pi,a(s, s) = 1 and Pi,a(s, s′) = 0 for s′ , s. Since the rate is zero, we could effectively

have chosen any values for this row, but this choice is convenient since it encodes the

fact that we remain in the same state1. Recall that the multiplication of a matrix by a

rate function was defined in Equation 5.1.

As an example of such a ‘partial’ generator matrix, consider the following PEPA

sequential component Ci:

Ci
def

= (a,r).C′
i

C′
i

def

= (b,0.5⊤).Ci+ (b,0.5⊤).C′
i

Here there are just two states, Ci and C′
i
, and two action types, a and b, and the com-

ponent of the generator matrix corresponding to Ci is as follows:

Qi = Qi,a + Qi,b

= ri,a
(

Pi,a− I2
)

+ ri,b
(

Pi,b− I2
)

=

















r

0

















































0 1

0 1

















− I2

















+

















0

⊤

















































1 0

0.5 0.5

















− I2

















To build a compositional representation of the generator matrix Q of an arbitrary

PEPA model, whose system equation is structured as in Equation 6.1, we need to com-

bine the individual generator matrices Qi,a in an appropriate way. More precisely, the

1Note that this differs from [93, 94], where the elements of the row are all zero. In this case, instead

of subtracting an identity matrix I, they subtract a diagonal matrix Ii,a such that Ii,a(s, s)= 1 if ri,a(s)> 0,

and is zero otherwise.
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compositional representation of Q has to describe the same CTMC as induced by the

semantics of the PEPA model. Because cooperation between two PEPA components

uses the minimum of two rates, we need to be especially careful that this leads to the

correct apparent rate for each state and action type.

To ensure this, and to provide a simple Kronecker form for the system equation,

the use of functional rates for PEPA was proposed in [93]. This means that for each

action type a, there is a single rate function ra describing the apparent rate of a for

each state in the system — which may depend on the state of more than one sequential

component. For instance, consider the system equation of the example PEPA model

from Figure 2.5:

Server ⊲⊳
{request, response }

(Client ‖ Client) (6.3)

Here, the ability of the system to perform a request activity depends on the local states

of both clients and the state of the server, hence a functional rate for request must in

general depend on the state of all three components.

So that we can avoid having functional rates that depend on multiple components

in the model, we will introduce and use a variant of the Kronecker representation

in [93, 94]. The difference is that we ensure that functional rates depend only on the

state of a single component, at the expense of having more complicated combinators

for combining the Qi,a matrices. This leads to a representation that is a little less elegant

mathematically, but which enables us to more easily establish and prove the results in

the remainder of this chapter. The two main reasons are as follows:

1. We can store and abstract the apparent rate function of each component Ci by

representing it as a vector of fixed size |Si|, where Si is the state space of Ci. This

makes it more straightforward to construct our abstractions.

2. To prove the correctness of our compositional abstractions (Sections 6.3 and 6.4)

we will just need to prove that safety is preserved by two Kronecker operators,

which we will call � and �. These correspond respectively to cooperating and

independent activities, and will be defined momentarily.

To describe the generator matrix term Qi,a for activities of type a in a component Ci,

we will use the shorthand (ri,a, Pi,a), which is defined as follows:

(ri,a, Pi,a) = ri,a

(

Pi,a− I|Si|

)

= Qi,a

where Si is the state space of Ci.
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Recall that ri,a is an apparent rate function (depending only on the state of Ci)

and Pi,a is a probabilistic transition matrix, as in Equation 6.2. If a component Ci

cannot perform any activities of action type a, we define its generator matrix term to

be Qi,a = (r⊥, I|Si|), where r⊥(s) = 0 for all s ∈ Si.

Using this notation, we can now introduce two Kronecker operators, � and �,

which correspond to cooperating and independent activities. For cooperation over an

action type a, we will use the operator �, which is defined as follows2:

(r1,a, P1,a)� (r2,a, P2,a) =
(

min{r1,a,r2,a }, P1,a⊗ P2,a
)

(6.4)

where min{r1,a,r2,a }(s1, s2) = min{r1,a(s1),r2,a(s2) } for all s1 ∈ S1 and s2 ∈ S2. The

operator ⊗ denotes the Kronecker product, and is defined in Appendix C.

If, on the other hand, activities of type a are performed independently, we will use

the operator �, which we can define in terms of �:

(r1,a, P1,a)� (r2,a, P2,a) = (r1,a, P1,a)� (r⊤, I|S2|)+ (r⊤, I|S1|)� (r2,a, P2,a) (6.5)

where r⊤(s) = ⊤ for all s. Intuitively, this is just a lifting of the Kronecker sum to our

(r, P) notation. Here, the ‘+’ operator is standard matrix addition, but to continue to

use our (r, P) representation we will define it compositionally as follows:

Theorem 6.1.1. Consider two generator matrices Q1 = (r1, P1) and Q2 = (r2, P2), cor-

responding to the same state space S — Q1 and Q2 are both |S | × |S | matrices. Then

Q1+Q2 can be written as follows:

Q1+Q2 = (r1, P1)+ (r2, P2) =

(

r1+ r2,
r1

r1+ r2
P1+

r2

r1+ r2
P2

)

where (r1+ r2)(s) = r1(s)+ r2(s), and
ri

r1+r2
(s) =

ri(s)
r1(s)+r2(s)

, i ∈ {1,2 }, for all s ∈ S .

The coefficients of P1 and P2 describe the relative probability of taking a transition

corresponding to Q1 or Q2. They are functions, because the relative apparent rate

can differ between states — each row of the matrix might need to be multiplied by a

different value.

For both of our Kronecker operators, � and �, the resulting generator matrix term

is for the component C1 ⊲⊳
L

C2, and has a state space of S1 × S2. This Cartesian state

space does not in general correspond to the derivative set ds(C1 ⊲⊳
L

C2), since it may

contain unreachable states. In practice, however, we never expand out the Kronecker

2A similar operator to � was used in [94], but for constant rates rather than rate functions.
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form directly, in the sense of actually performing the tensor multiplications — instead,

we derive only the reachable state space, using a bottom-up state space derivation

algorithm, similar to that described in [177].

There are a number of memory-efficient algorithms for solving Markov chains

at the Kronecker description level, in which the full generator matrix remains im-

plicit [27, 64]. In our case, however, we view the Kronecker form just as an inter-

mediate representation on which our abstractions are performed. Since we need to

analyse not just Markov chains, but also abstract Markov chains, we do derive the

state space of the model — but only after performing the abstraction. This is so that

we can use the model checking algorithm in [18, 105], which works over an explicit

representation of the state space.

We can now define our Kronecker representation for PEPA models, using the �

and � operators.

Definition 6.1.2. Given a PEPA model C =C1 ⊲⊳
L1
· · · ⊲⊳

LN−1
CN , its Kronecker form Q(C)

is defined as follows:

Q(C1 ⊲⊳
L1
· · · ⊲⊳

LN−1
CN) =

∑

a∈Act(C)

Qa(C1 ⊲⊳
L1
· · · ⊲⊳

LN−1
CN)

where Act(C) is the set of all action types that occur in C (both synchronised and

independent), and Qa is defined inductively as follows:

Qa(Ci) = (ri,a, Pi,a) if Ci is a sequential component

Qa(Ci ⊲⊳
L

C j) =















Qa(Ci)�Qa(C j)

Qa(Ci)�Qa(C j)

if a ∈ L

if a < L

The following theorem establishes the correctness of our Kronecker representation, in

that it defines an equivalent CTMC to that induced by the PEPA semantics:

Theorem 6.1.3. For all well-formed3 PEPA models C, the CTMC induced by the se-

mantics of PEPA and the CTMC described by the generator matrix Q(C), projected

onto the derivative set ds(C) (the reachable state space of C), are isomorphic.

As an example of how the Kronecker form is applied, let us take the PEPA model

in Figure 6.1. Here, there are two sequential components (C1 and D1) and three action

3A well-formed PEPA model is one in which cooperation occurs only at the level of the system

equation. If a model has a single system equation, the PEPA syntax given in Section 2.5.2 implicitly

guarantees that it is well-formed.
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C1
def

= (a,ra).C2+ (b,rb).C3 D1
def

= (a,rD).D2

C2
def

= (τ,r2).C1+ (τ,r2).C3 D2
def

= (b,rD).D1

C3
def

= (τ,r3).C2+ (τ,r3).C1

C1 ⊲⊳
{a,b }

D1

Figure 6.1: An example PEPA model and its graphical representation

types — we cooperate over a and b, but τ is performed independently. Applying our

Kronecker form, we arrive at the following structure for Q(C1 ⊲⊳
{a,b }

D1):

Q(C1 ⊲⊳
{a,b }

D1) = Qτ(C1) � Qτ(D1)

+ Qa(C1) � Qa(D1)

+ Qb(C1) � Qb(D1)

If we had an additional copy of component D, such that the system equation was

C1 ⊲⊳
{a,b }

(D1 ‖ D1), then Q(C1 ⊲⊳
{a,b }

(D1 ‖ D1)) would be written as:

Q(C1 ⊲⊳
{a,b }

(D1 ‖ D1)) = Qτ(C1) � (Qτ(D1) � Qτ(D1))

+ Qa(C1) � (Qa(D1) � Qa(D1))

+ Qb(C1) � (Qb(D1) � Qb(D1))

Returning to our model with just two components, let us consider the internal ac-

tion type τ of component C. We can write the corresponding generator matrix term,

Qτ(C1) = (rC,τ, PC,τ) as follows (where index i represents the state Ci, for 1 ≤ i ≤ 3):

Qτ(C1) =


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


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
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


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Although it has been written as a vector in the above, it is important to remember

that the rate function is a function, and is interpreted as multiplying each row of the

probability transition matrix by the corresponding rate. The generator matrix for the
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entire model can be written in its Kronecker form as follows, where we expand out the

� and � operators to show the tensor products ⊗:
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(6.6)

Note that the second term in the above evaluates to zero, because the D component

does not perform any internal τ activities.

6.2 Compositional Abstraction of PEPA Models

In Section 5.3 of the previous chapter we introduced abstract Markov chains and

stochastic comparison in the context of CTMCs, and in the previous section we have

seen how the CTMC generated by a PEPA model can be described compositionally.

We could naı̈vely apply these bounding techniques to PEPA models by first deriving

the underlying Markov chain, but this would not take advantage of the compositional

structure of the model. Moreover, in order to apply the bounding techniques, we would

first need to generate and store the concrete Markov chain — if the model is sufficiently

complex, this might not be possible.

The purpose of the remainder of this chapter is to show how we can directly apply

the bounding techniques we have seen to PEPA models, in a compositional manner.

The basic idea is illustrated in Figure 6.2 — we abstract each sequential component

of a PEPA model separately, in such a way that the CTMC derived from the abstract

model is a safe abstraction of the CTMC derived from the concrete model. What we

mean by ‘safe’ depends on the abstraction technique — we will discuss this in detail

for abstract Markov chains and stochastic bounds in Sections 6.3 and 6.4 respectively.
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Figure 6.2: Compositional abstraction of PEPA models

To apply these techniques compositionally, we need to have defined an abstraction

(S
♯
i
,αi) for each sequential component Ci of a PEPA model, specifying how we want

to aggregate its states. This induces an abstraction (S ♯,α) over the state space of the

system. Of course, we need to be able to define such an abstraction for this to be

practical, and we show how to do so using our tool in the next chapter — finding a

good abstraction automatically is difficult, and so we instead provide an interface for

graphically selecting states to aggregate. As an example, consider component C of the

PEPA model in Figure 6.1. We can abstract its concrete state space SC = {C1,C2,C3 }

to S
♯
C
= {C1,C{2,3 } }, using the following abstraction function:

α(C1) =C1 α(C2) =C{2,3 } α(C3) =C{2,3 }

The reason for using both abstract Markov chains and stochastic bounds, is that

we want to be able to model check both path properties and steady state properties of

CSL/X. We discussed the bounding of CSL path properties in Section 5.6.1, in relation

to model checking the until operator of three-valued CSL for abstract CTMCs. We also

described in Section 5.6.2 how stochastic bounds can be used to bound the steady state

distribution of a CTMC. If we combine these two approaches we can model check all

properties in CSL/X.

Consider a CSL/X steady state property, which has the following form, in the case

of a probability test4, where Φ is itself a CSL/X state property:

S=?(Φ)

4We could similarly have asked whether the probability is above or below a certain value, for exam-

ple S<p(Φ), but we would still need to compute the interval on the probability first.
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Figure 6.3: Model checking of CSL steady state properties

This asks the question: “what is the probability, in the steady state of our model, that

we will be in a state that satisfies Φ?” In general, the answer is a probability interval,

since an abstraction usually introduces some uncertainty.

There are two stages to model checking such a property, which we illustrate in

Figure 6.3, using the example from PEPA model from Figure 6.1. These are as follows:

1. We find upper and lower bounds for the set of states that satisfy Φ. We can

assume without loss of generality that Φ does not itself contain a steady state

operator — if it does, we can apply an inductive argument to model check Φ.

However, if the Markov chain is ergodic, then it does not make sense to nest

steady state formulae [23].

Since Φ is then a CSL/X property not including the steady state operator, we use

the technique of abstract Markov chains to compute the following sets of states

(we will show how to do this in Section 6.3):

S L
Φ
= { s | JΦK(s) = tt }

S U
Φ
= { s | JΦK(s) , ff }

(6.7)



6.2. Compositional Abstraction of PEPA Models 141

where JΦK(s) denotes the (three-valued) truth of property Φ in state s (see Fig-

ure 5.4). The lower-bounding set S L
Φ

contains those states that definitely satisfy

Φ, and the upper-bounding set S U
Φ

contains all states that might satisfy Φ.

2. We find upper and lower stochastic bounds for the PEPA model, from which we

can obtain probability bounds for the steady state property. For the lower bound,

we want an under-approximation of the probability of being in S L
Φ

, and for the

upper bound we want an over-approximation of the probability of being in S U
Φ

.

To do this, we compositionally construct a lower and upper bound of the PEPA

model, using a partial order derived from the sets S L
Φ

and S U
Φ

respectively. We

will show how to construct this partial order and the stochastic bounds in Sec-

tion 6.4. From this, we can solve the bounding PEPA models to obtain bounding

steady state distributions, which give us upper and lower bounds for the quanti-

tative CSL property S=?(Φ).

Figure 6.3 shows these two stages when computing an upper bound for the probability

of satisfying a state formula Φ, given an abstraction that combines the states C1 and

C2 of the original model. In the first stage, we compute S U
Φ

— the set of states that

possibly satisfy Φ — using a compositional abstract Markov chain abstraction, and

three-valued CSL model checking. We can then calculate the steady state probability

S=?(Φ) in the second stage, on a stochastic bound of the model.

In order to compositionally compute a stochastic bound of the PEPA model, how-

ever, we first need to express the set S U
Φ

compositionally — namely, we need to have

a separate set of states for each component. For a model of N components, the upper-

bounding set of states for the ith component is given by S U
i

:

S U
i =

{

si

∣

∣

∣ (s1, . . . , si, . . . , sN) ∈ S U
Φ

}

(6.8)

In general this leads to an over-approximation of the set S U
Φ

, but we gain composi-

tionality. In the example, S U
Φ
= { (C2,D1), (C3,D1) }, which leads to S U

C
= {C2,C3 } and

S U
D
= {D1 }. In the second stage we construct a compositional stochastic bounding

PEPA model, using an ordering that allows us to compare the sets of states S U
C

and S U
D

.

Finally, we construct and solve the CTMC induced by the PEPA semantics.

The remaining sections in this chapter are concerned with applying abstract

Markov chains and stochastic bounds to PEPA models compositionally, so that we can

use the above approach. In particular, the above discussion assumes that we already

know how to apply both techniques, and shows how we can combine them. Note once
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again that our approach is to use compositional abstraction, rather than performing the

model checking compositionally5, in the sense of [23]. We have implemented a tool

that allows the specification and model checking of CSL properties on PEPA models,

which we will see in more detail, along with a number of examples, in Chapter 7.

6.3 Model Checking of Transient Properties

To model check transient CSL properties, excluding the timed next operator, we will

show in this section how to compositionally construct an abstract CTMC from the

Kronecker representation of a PEPA model. We will begin by defining an abstract

CTMC component, in which we bound the probability transition matrix and the rate

function separately.

Definition 6.3.1. An abstract CTMC component is a tuple (S ♯,π(0)♯, PL, PU ,rL,rU ,L♯),

where S ♯, π(0)♯, PL, PU , and L♯ are defined the same as for an abstract CTMC, and

rL,rU : S ♯→ R≥0∪{⊤} are functions such that rL(s) ≤ rU(s) for all s ∈ S ♯.

An abstract CTMC component induces an abstract CTMC as follows:

Definition 6.3.2. LetM♯♯ = (S ♯,π(0)♯, PL
a , P

U
a ,r

L
a ,r

U
a ,L

♯) be an abstract CTMC compo-

nent. Given a unformisation constant λ ≥maxs∈S ♯ r
U
a (s), we can construct an abstract

CTMC as follows:

ACTMCλ(M
♯♯) = (S ♯,π(0)♯, PL, PU ,λ,L♯)

where PL and PU are defined as follows:

PL(s, s′) =



















rL
a (s)

λ PL
a (s, s′) if s , s′

rL
a (s)

λ PL
a (s, s)+

(

1−
rU

a (s)

λ

)

otherwise

PU(s, s′) =



















rU
a (s)

λ PU
a (s, s′) if s , s′

rU
a (s)

λ PU
a (s, s)+

(

1−
rL

a (s)

λ

)

otherwise

The intuition here is that we add the diagonal elements to account for the term 1−
ra

λ I

that appears in the uniformised probabilistic transition matrix:

P =
1

λ
Q+ I =

1

λ
ra(Pa− I)+ I

Since we only have upper and lower bounds for the rates ra, we need to choose the

most conservative values to ensure that the bound is correct. This comes at a loss of

5The exception being for atomic properties that are already specified compositionally.
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precision, but this is necessary if we are to combine the abstract CTMC components

and still end up with a safe abstract CTMC — with respect to the abstract CTMC

obtained from the Markov chain of the PEPA model. In this context, an abstract CTMC

M
♯
2

is a safe approximation ofM
♯
1

ifM
♯
1
≤M

♯
2
, as per Definition 5.6.2.

Given a sequential PEPA component Ci with state space Si, we can define a CTMC

Mi,a = (Si,π
(0)
i
, Pi,a,ri,a,Li) describing the behaviour of the component with respect

to action type a. This will not necessarily be ergodic, since some states of Ci might

not perform an action of type a. The component Qi,a corresponding to Mi,a in the

Kronecker representation of the PEPA model is defined as Qi,a = ri,a(Pi,a− I). From the

CTMCMi,a, given an abstraction (S
♯
i
,αi), we can derive an abstract CTMC component

as follows:

Definition 6.3.3. The abstract CTMC component induced by an abstraction (S ♯,α) on

a CTMCM = (S , P,r,L) is defined as:

AbsComp(S ♯,α)(M) = (S ♯,π(0)♯, PL, PU ,rL,rU ,L♯)

where:

π
(0)♯(s♯) =

∑

s∈γ(s♯)

π
(0)(s)

PL(s
♯
1
, s
♯
2
) = min

s1∈γ(s
♯
1
)

∑

s2∈γ(s
♯
2
)

P(s1, s2)

PU(s
♯
1
, s
♯
2
) = max

s1∈γ(s
♯
1
)

∑

s2∈γ(s
♯
2
)

P(s1, s2)

rL(s♯) = min
s∈γ(s♯)

r(s)

rU(s♯) = max
s∈γ(s♯)

r(s)

L♯(s♯,a) =































tt if ∀s ∈ γ(s♯). L(s,a) = tt

ff if ∀s ∈ γ(s♯). L(s,a) = ff

? otherwise

Theorem 6.3.4. Consider a CTMCM = (S ,π(0), P,r,L). For any uniformisation con-

stant λ ≥maxs∈S r(s), and any abstraction (S ♯,α) onM, the following holds:

Abs(S ♯,α)

(

Unif λ(M)
)

≤ ACTMCλ
(

AbsComp(S ♯,α)(M)
)

This theorem states that abstract CTMC components safely approximate abstract

CTMCs. In other words, an abstract CTMC component gives an over-approximation of

the probability transition intervals, compared to directly generating an abstract CTMC.
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Figure 6.4: Safety property of Abstract CTMC Components (Theorem 6.3.5)

Consider two abstract CTMC components,M
♯♯
1,a
= (S

♯
1
,π

(0)♯
1
, PL

1,a, P
U
1,a
,rL

1,a,r
U
1,a
,L
♯
1
)

andM
♯♯
2,a
= (S

♯
2
,π

(0)♯
2
, PL

2,a, P
U
2,a
,rL

2,a,r
U
2,a
,L
♯
2
). We can construct a new abstract CTMC

component, corresponding to the two components cooperating over action type a as

follows:

M
♯♯
1,a

�M
♯♯
2,a
=

(

S
♯
1
×S
♯
2
,π

(0)♯
1
⊗π

(0)♯
2
, PL

1,a⊗ PL
2,a, P

U
1,a⊗ PU

2,a,min{rL
1,a,r

L
2,a },min{rU

1,a,r
U
2,a },L

♯
1
×L
♯
2

)

where the new labelling function is L
♯
1
×L
♯
2
((s1, s2),a) = L

♯
1
(s1,a)∧L

♯
2
(s2,a). The min-

imum operators in the above come from the semantics of cooperation in PEPA, so they

apply to both the upper and lower bounds for the rates. If the two components do not

cooperate over the action type a (i.e. they perform activities of type a independently),

then the new abstract CTMC component will instead be:

M
♯♯
1,a

�M
♯♯
2,a
=

(

S
♯
1
×S
♯
2
,π

(0)♯
1
⊗π

(0)♯
2
, PL

1,a⊕ PL
2,a, P

U
1,a⊕ PU

2,a,r
L
1,a+ rL

2,a,r
U
1,a+ rU

2,a,L
♯
1
×L
♯
2

)

where (rB
1,a+ rB

2,a)(s1, s2) = rB
1,a(s1)+ rB

2,a(s2) for B ∈ {L,U }.

We can now present the main theorem of this section — that the abstract CTMC

we obtain by composing the abstract CTMC components of a PEPA model is a safe

approximation of the abstract CTMC obtained by abstracting the CTMC induced by

the PEPA semantics. This is illustrated in Figure 6.4.

Theorem 6.3.5. Consider two PEPA components C1 and C2, with abstractions (S
♯
1
,α1)

and (S
♯
2
,α2) respectively. Let M

♯♯
i,a = AbsComp

(S
♯
i
,αi)

(Qa(Ci)) for i ∈ {1,2 }. Then for
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all λ such that Unif λ(C1 ⊲⊳
L

C2) is defined, the following holds:

Abs(S ♯,α)

(

Unif λ

(

Q
(

C1 ⊲⊳
L

C2

)))

≤ ACTMCλ



















∑

a∈L

M
♯♯
1,a

�M
♯♯
2,a
+

∑

a∈L

M
♯♯
1,a

�M
♯♯
2,a



















where S ♯ = S
♯
1
×S
♯
2
, α(s1, s2) = (α1(s1),α2(s2)), and L = (Act(C1)∪Act(C2)) \L.

Since this method produces an over-approximation to the non-compositionally de-

rived abstract CTMC, we can directly apply the model checking algorithm described

in [18, 105] to this abstract Markov chain — this allows us to check transient three-

valued CSL properties. In particular, given a CSL state property Φ, we can determine

the set of states that definitely satisfy Φ (the model checker returns tt), and those that

definitely do not satisfy Φ (the model checker returns ff).

Note that we do not consider the PEPA hiding operator here, since it is always

possible to eliminate hiding by alpha-renaming of action types. This is because, in a

well-formed PEPA model, hiding can only occur at the system equation level — hence

an action type cannot be dynamically hidden during the model’s execution.

As an example, let us return to the PEPA model from Figure 6.1, and consider

constructing an abstract CTMC for the case when we aggregate states C2 and C3.

The Kronecker form of the generator matrix Q of the model is as follows (the same

as Equation 6.6, but without the term that evaluates to zero). To make the example

concrete, we set the rates such that ra = r2 = rD = 1 and rb = r3 = 2:

Q =min


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














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
























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4






















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
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
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
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
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
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











1 0 0

0 1 0

0 0 1




















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
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


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


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


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
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






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




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


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
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
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
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
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The compositional abstract Markov chain now has the following form, where we save

space by writing intervals for the elements of the matrices, rather than intervals on the
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matrices themselves:

Q♯ =min
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We can multiply this out to arrive at the following abstract CTMC (where the uni-

formisation constant λ = 4). For clarity, we have labelled the state that each row of the

matrix corresponds to:

Q♯ =

(C1D1)

(C1D2)

(C{2,3 }D1)

(C{2,3 }D2)
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We are now in a position to model check transient CSL/X properties of this abstract

CTMC, and compare them to the original PEPA model. As an example, consider the

property P=?(C1 U
[0,1] C{2,3 }), which asks the question “what is the probability that

within the first time unit, we will remain in state C1 before moving to state C2 or C3?”

Since there are only two states in the abstracted C component, this is equivalent to

asking whether we will leave state C1 within the first time unit. Model checking the

original model gives an answer of 0.6321, and in this case the abstract CTMC gives a

precise answer of [0.6321,0.6321].

In this case, the abstraction is a success because it gives a very tight bound on the

property. Of course, in general we cannot expect to always obtain tight bounds, and

the choice of abstraction has a large impact on the precision. The purpose of this small

example was to demonstrate how our abstraction is applied — we will look at some

larger examples in the next chapter, which better illustrate how this technique can be

useful in practice.

6.4 Model Checking of Steady State Properties

We will now turn to model checking steady state properties of PEPA models, for which

we apply the technique of stochastic bounds that was introduced in Section 5.6.2. The
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work that we present here is general in the sense that it applies to all well-formed

PEPA models. This is in contrast to previous work, which considered the applica-

tion of stochastic bounds to particular classes of PEPA model, such as passage time

properties of workflow-structured models [68]. There is an advantage to looking at

specific classes of model, in that it may be possible to obtain more accurate bounds in

light of the additional information that is available. However, it is clear in our context

that generality is important, since we want to avoid any restrictions on the structure of

models that we extract from program code — in particular, allowing the model-level

transformations that we introduced in Section 4.6. We will therefore present a general

approach to bounding steady state properties of PEPA models, that can be applied to

the models produced by the techniques of Chapter 4.

If we recall the approach that we described for computing CSL steady state proper-

ties, we need to find an upper bound for the steady state probability of being in a set of

states S U and a lower bound for the steady state probability of being in a set of states

S L, as defined in Equation 6.7. Let us consider the upper bound — the set S U is not

specified compositionally in terms of the states of each sequential component, hence

we need to first convert it into a compositionally specified set. This is so that we can

define a partial order on the state space, and so construct a stochastic bound of each

component separately. There are two approaches we can take to doing this:

1. Find the smallest over-approximation of the set S U that can be specified compo-

sitionally (see Equation 6.8).

2. Separate S U into disjoint sets that can each be specified compositionally.

For example, consider the PEPA model from Figure 6.1. If the property is

S U = { (C1,D1), (C2,D2) } then the first method would give {C1,C2 } × {D1,D2 } =

{ (C1,D1), (C2,D1), (C1,D2), (C2,D2) }, which gives a coarser approximation to the set

of states. Conversely, the second method would give two sets, {C1 }×{D1 }= { (C1,D1) }

and {C2 } × {D2 } = { (C2,D2) }, which together specify the same set as S U , but require

us to produce two different stochastic bounds of the model.

Before bounding a PEPA model, we need to decide upon two things — an ordering,

and a partitioning of its state space. Since the idea is to produce the bound compo-

sitionally, these must also be defined compositionally. Finding a good ordering and

partitioning is difficult — we rely on the user to specify the partitioning (see Chapter 7

for details on how this is done), although we choose the ordering automatically.
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Figure 6.5: State space ordering and lumpability constraints

In Section 6.2 we stated that for a PEPA model with N components, C1, . . . ,CN , we

define an abstraction (S
♯
i
,αi) over the state space Si of each component Ci. Together,

these induce an abstraction over the Cartesian state space S1 × · · · × SN of the system.

This defines a unique partitioning of the state space according to which concrete states

map to the same abstract state.

In addition to partitioning the state space, we need to provide an ordering. The

ordering we choose will in general depend on the property we are interested in. For

example, if we are interested in the steady state probability of being in a particular set

of states, it makes sense to place these at the ‘top’ of the ordering. This is so that we

can directly compare the probabilities of being in this set. Furthermore, choosing a

partial order can be advantageous, since it allows more flexibility when constructing

the bound. The only constraint we have is that we only allow entire partitions to be

compared with other partitions, so that the abstraction can be applied.

The definitions and theorems in this section are applicable to any partial order,

but in order to algorithmically construct the bound, we will restrict ourselves to the

following class:

Definition 6.4.1. A simple partial order over a state space S is given by a set of M

disjoint sets, B1, . . . ,BM ⊆ S , such that ∪iBi = S , where:

s ≺ s′ iff ∃i, j. s ∈ Bi∧ s′ ∈ B j∧ i < j

Each Bi may contain multiple partitions, but not vice versa. This is illustrated in Fig-

ure 6.5, which shows an example state space ordering and partitioning, and the result-

ing constraints on the upper-bounding transition matrix.
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Most of the time, however, we are only interested in the probability of being in one

particular set of states — for example the set SΦ of states that satisfy the CSL state

formula Φ. Under these circumstances, we have a special case of the simple partial

order:

Definition 6.4.2. The property partial order of a set of states SΦ ⊆ S over the state

space S of a PEPA component is defined as follows:

s ≺ s′ iff s ∈ S C
Φ
∧ s′ ∈ SΦ

where S C
Φ

is the complement of SΦ.

This is an instance of the simple partial order, when M = 2, B1 = S C
Φ

, and B2 = SΦ.

For the remainder of this section, we will present our results in relation to the simple

partial order, which is the more general of the two. For implementation as part of a

CSL model checker, however, the property partial order is sufficient.

It is important to point out that choice of ordering can significantly affect the preci-

sion of the bounds. The property partial order that we define here is a heuristic, in that

we can expect it to give the best result in many cases, due to imposing the fewest con-

straints on the stochastic bound. For particular models, however, there may be other

orderings that provide greater precision, due to exploiting some structure in the model.

6.4.1 Stochastic Bounding of PEPA Models

Given an ordering and partitioning of a state space, we need to find a monotone CTMC

that is both lumpable and an upper bound of the original CTMC. To do this compo-

sitionally, we must work at the level of the matrices Qa = ra(Pa − I), bounding both

the rate function ra and the transition matrix Pa separately. This is so that when we

construct the generator matrix of the entire model, by expanding out the Kronecker

form in Definition 6.1.2, it remains upper-bounding, monotone and lumpable.

Unfortunately, it is not the case that the monotonicity of ra and Pa implies that

of Qa. In order for Qa to be monotone, its embedded DTMC after we uniformise it

must be monotone, as per Definition 5.6.10. The effect of uniformisation is to add self

loops (i.e. to add probability mass to the diagonal elements) so that each state has the

same exit rate λ. Since ra is increasing, however, this means that we add a decreasing

amount to the diagonal element of each row (the −raI term).

This is best illustrated by example. In the following, both the rate function ra and

the probability transition matrix Pa are monotone (assuming a totally ordered state
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space), but the embedded DTMC after uniformisation is not:
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(6.9)

To avoid this problem, we need to strengthen the definitions of stochastic ordering and

monotonicity, by adding an extra constraint. We call these the rate-wise stochastic

ordering and rate-wise monotonicity respectively. Their definitions are:

Definition 6.4.3. Given two generator matrix components Qa = ra(Pa − I) and

Q′a = r′a(P′a− I), we say that Qa ≤rst Q′a under the rate-wise stochastic ordering, if:

1. Pa ≤st P′a

2. For all states s:

(a) If ra(s) > 0 : 1 ≤
r′a(s)

ra(s)
≤min

s′≺s































1−
∑

t≻s′

Pa(s, t)

1−
∑

t≻s′

P′a(s, t)































(b) If ra(s) = 0∧ r′a(s) > 0 : ∀s′ ≺ s.
∑

t≻s′

P′a(s, t) = 1

Definition 6.4.4. A generator matrix component Qa = ra(Pa− I) is rate-wise monotone

if:

1. Pa is monotone.

2. For all states s, s′ such that s ≺ s′:

(a) If ra(s) > 0 : 1 ≤
ra(s′)

ra(s)
≤ min

s′′≺s































1−
∑

t≻s′′

Pa(s, t)

1−
∑

t≻s′′

Pa(s′, t)
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


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
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(b) If ra(s) = 0∧ ra(s′) > 0 : ∀s′′ ≺ s.
∑

t≻s′′

Pa(s′, t) = 1

Intuitively, in both cases, we ensure that the probability transition matrix increases

faster than the rate function, so that after uniformisation we remain monotone and

comparable. Note that the original generator matrix component is not necessarily rate-

wise monotone — monotonicity is only required of the upper bound that we construct.

It is important to comment on the above definitions in the case when ra(s) = 0. If

the numerator (r′a(s) or ra(s′)) is also zero, then there is no additional condition on the
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probabilities, as the rate does not increase. If the numerator is greater than zero, how-

ever, the ratio of the rates is undefined, and so we instead ensure that the denominator

on the right side of the inequality is zero — i.e. the ratio of the probabilities is also

undefined. In real terms, this means that we are effectively blocked from adding prob-

ability mass below the diagonal element for previously disabled activities, potentially

leading to a looser bound than if the activity had been enabled.

We can show that the strong stochastic ordering and monotonicity follow from

rate-wise stochastic comparison and monotonicity. This means that any CTMC that

we construct by this method is stochastically comparable in the usual sense. We state

this in the following two theorems:

Theorem 6.4.5. If Qa = ra(Pa− I) ≤rst Q′a = r′a(P′a− I′) and for all s ∈ S , ra(s) ≤ r′a(s),

then Qa ≤st Q′a.

Theorem 6.4.6. If Qa = ra(Pa − I) is rate-wise monotone, and for all s ≺ s′ ∈ S ,

ra(s) ≤ ra(s′), then Qa is monotone.

Unfortunately, it is still not the case that rate-wise monotonicity and rate-wise

stochastic ordering are preserved in general when two components cooperate. The

problem arises because of the minimum operator, which is applied to the rate functions.

If we take monotonicity, for example, the probabilistic transition matrix is constrained

according to the ratio between successive rates. When we compose two monotone

components, however, it is possible for one to be completely bounded by the other in

terms of its ability to perform an activity of type a. That is to say, the rate of perform-

ing a in each state of one component might be less than the rate of a in any state of the

other. Hence the minimum of the two rate functions, and the resulting constraint on the

composed probabilistic transition matrix, depends on only one of the components. The

required constraint on the composed matrix may therefore be tighter than that for one

of the components, and so the rate-wise monotonicity and ordering may fail to hold.

This problem is more apparent if we look at a particular example:
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Note that this is similar to Equation 6.9, which illustrated why we need rate-wise com-

parison and monotonicity. In this case, the component is rate-wise monotone, but if

it were to synchronise with a component that has a rate function of, say, [1,1,2], we

would arrive at the same problem as before.
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It is therefore not possible for us to construct a bound for a sequential component,

without considering the context in which it occurs. To define this context, we need

a measure on components, to indicate the extent to which the rate function increases.

For monotonicity, we are concerned with the ratio between successive rates, and in

particular the maximum of these. This is because, when taking the Kronecker product,

we consider all possible state combinations. Hence the maximum increase will actually

occur, and gives a bound on how a component can affect those that it cooperates with.

Definition 6.4.7. The internal rate measure of a component C, with generator matrix

Qa = ra(Pa− I) for action type a, is:

‖C‖a =























⊤ if ∃s. succ(s) , ∅∧ ra(s) = 0

max
s,s′

{

ra(s′)

ra(s)

∣

∣

∣

∣

∣

s′ ∈ succ(s)

}

otherwise

Note that max∅ = 0. Here, succ(s) denotes the set of immediate successors of the state

s as defined by the simple partial order6. More precisely, we say that s′ ∈ succ(s) if s′ ≻

s∧¬∃s′′. s′ ≻ s′′ ≻ s. In the case of stochastic ordering, we need to compare the rate

functions of two components (the original and the bound), but otherwise the same

principle applies:

Definition 6.4.8. The comparative rate measure of components C and C′, with gen-

erator matrices Qa = ra(Pa − I) and Q′a = r′a(P′a − I) respectively for action type a, is

defined as:

∥

∥

∥C,C′
∥

∥

∥

a
=























⊤ if ∃s. succ(s) , ∅∧ ra(s) = 0

max
s

{

r′a(s)

ra(s)

}

otherwise

In the above definitions, note that the ratio may be undefined (i.e. ra(s) = 0 for some

s). In this case, we define the rate measure to have the value ⊤, which dominates all

the real numbers.

We can now state precisely what we mean by a context, which is slightly different to

a conventional process algebra definition, since we care only about those components

that can affect the rate at which we perform an activity.

Definition 6.4.9. The context c© of a component C is the set of all components that

it can cooperate with, as defined by the system equation. We say that c© is internally

6Note that this successor function comes from our partial order of the state space (i.e. the order that

tells us which probabilities we can compare), and not from the transition relation of the Markov chain.
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bounded by Bint ∈ R≥0∪{⊤}, with respect to action type a, if:

∀Ci ∈ c©. ‖Ci‖a ≤ Bint

Furthermore, c© and c©′ are comparatively bounded by Bcomp ∈R≥0∪{⊤}, with respect

to action type a, if:

∀Ci ∈ c©,C′i ∈ c©′.
∥

∥

∥Ci,C
′
i

∥

∥

∥

a
≤ Bcomp

Note that ‘ c©’ should be read as an atomic symbol, having no relation to ‘C’ as used

for a component. Since the internal and comparative bounds depend only on the rate

functions, we have a simple algorithm for computing them. If we construct a monotone

upper bound of each rate function before bounding the transition matrices, then the

internal bound of a context, for example, is simply the maximum of the internal rate

measures of the components within the context.

This leads us to the final extension of our definitions — the context-bounded rate-

wise stochastic ordering and context-bounded rate-wise monotonicity, which extend

Definitions 6.4.3 and 6.4.4 respectively. Intuitively, they require the rate function ri,a

of component i to not increase faster than is allowed for by the matrices P j,a, j , i of

all the components it cooperates with.

Definition 6.4.10. Given two generator matrix components Qa = ra(Pa − I) and

Q′a = r′a(P′a− I), we say that Qa ≤
Bcomp

rst Q′a under the context-bounded rate-wise stochas-

tic ordering, if:

1. Pa ≤st P′a

2. For all states s:

(a) If ra(s) > 0∧Bcomp , ⊤ : 1 ≤max

{

r′a(s)

ra(s)
,Bcomp

}

≤min
s′≺s
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





























(b) If (ra(s) = 0∧ r′a(s) > 0)∨Bcomp = ⊤ : ∀s′ ≺ s.
∑

t≻s′

P′a(s, t) = 1

We can extend the definition of rate-wise monotonicity similarly:

Definition 6.4.11. A generator matrix component Qa = ra(Pa− I) is context-bounded

rate-wise monotone with respect to Bint, if:

1. Pa is monotone.
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2. For all states s, s′ such that s ≺ s′:

(a) If ra(s) > 0∧Bint , ⊤ : 1 ≤max

{

ra(s′)

ra(s)
,Bint

}

≤ min
s′′≺s


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Pa(s, t)
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∑

t≻s′′

Pa(s′, t)
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













(b) If (ra(s) = 0∧ ra(s′) > 0)∨Bcomp = ⊤ : ∀s′′ ≺ s.
∑

t≻s′′

Pa(s′, t) = 1

We can now prove that the CTMC of the system, after composing the individually-

bounded generator matrix components, is a monotone, lumpable, upper bound of the

concrete CTMC, with respect to the ordering on each component. Recall the shorthand

�, which was defined as:

(r1, P1)� (r2, P2) =min{r1,r2 }(P1⊗ P2− I|S1|⊗ I|S2|)

where S1 and S2 are the state spaces of components C1 and C2 respectively.

If these state spaces are partially ordered according to (S1,≺1) and (S2,≺2) respec-

tively, the � operator preserves stochastic comparison and monotonicity with respect

to the lifted orders (S1×S2,≺
L
1
) and (S1×S2,≺

L
2
). We say (s1, s2) ≺L

1
(s′

1
, s′

2
) if s1 ≺1 s′

1
,

and ¬∃s′′
2
. s′

2
≺2 s′′

2
. In other words, s1 and s′

1
must be comparable, but there are no

constraints on s2 and s′
2

other than that there are no states above s′
2

in the ordering ≺2.

≺L
2

is defined similarly.

The intuition behind these lifted orders is that we can only compare probabilities of

the entire PEPA model if we project back down onto the state space of one component.

In other words, we are able to bound steady state probability of a component being

in a certain state, in the context of the rest of the model. We would prefer to have

a stronger order than this, such as the product order, but unfortunately this does not

follow from the context-bounded rate-wise monotonicity and ordering. We will discuss

the advantages and limitations of our approach further in Chapter 8.

Theorem 6.4.12 (Monotonicity). Let two components, C1 and C2, occur in contexts

c©1 and c©2 respectively, where C1 ∈ c©2 and C2 ∈ c©1. Let c©1 be internally bounded

by B1
int

and c©2 by B2
int

, for action type a.

If the matrices Q1,a = r1,a(P1,a− I) of C1 and Q2,a = r2,a(P2,a− I) of C2 are context-

bounded rate-wise monotone by B1
int

and B2
int

respectively, then (r1,a, P1,a)� (r2,a, P2,a)

is context-bounded rate-wise monotone by the internal bound B3
int

of the context

c©1∩ c©2 of C1 ⊲⊳
L

C2, for all action sets L.
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Theorem 6.4.13 (Lumpability). Let C1 and C2 be PEPA models with generator matri-

ces Q1 =
∑

a Q1,a and Q2 =
∑

a Q2,a, where Q1,a = r1,a(P1,a− I) and Q2,a = r2,a(P′
2,a− I).

Then for all action types a, if the terms Q1,a in Q1 and Q2,a in Q2 are ordinarily

lumpable according to the partitions L1 and L2 respectively, then the term Qa =

(r1,a, P1,a)� (r2,a, P2,a) in Q =
∑

a Qa is ordinarily lumpable according to L1×L2.

Theorem 6.4.14 (Stochastic Order). Consider the components Ci and C′
i
, with gen-

erator matrices Qi,a = ri,a(Pi,a− I) and Q′
i,a = r′

i,a(P′
i,a− I), for i ∈ {1,2 } and action type

a. Let Qi,a ≤
Bi

comp

rst Q′
i,a, with contexts c©i ≤st c©′

i
, where Bi

comp is the comparative bound

of c©i and c©′
i
. If B3

comp is the comparative bound of the contexts c©1∩ c©2 and c©′
1
∩ c©′

2
,

we have (r1,a, P1,a)� (r2,a, P2,a) ≤
B3

comp

rst (r′
1,a, P

′
1,a)� (r′

2,a, P
′
2,a).

The preservation of monotonicity and stochastic order is ensured by the definitions we

have developed. Lumpability is preserved by the PEPA cooperation combinator, as a

consequence of the strong equivalence congruence [91]. Equivalent theorems also hold

for the compositional addition operator (r1,a, P1,a)+ (r2,a, P2,a) — we do not state the

theorems here, and their proofs follow the same pattern as for the above. Since the �

operator is defined in terms of � and compositional addition, this ensures that both �

and � preserve context-bounded rate-wise monotonicity and stochastic ordering, and

lumpability.

So that we can expand out the Kronecker form given in Definition 6.1.2 by adding

together the generator matrices for different action types, we also need to ensure that

normal matrix addition preserves the stochastic ordering and monotonicity. Note that

we only require the normal stochastic ordering and monotonicity at this stage, because

we no longer need to compose these generator matrices together. The following two

theorems hold for matrices over the same partially-ordered state space (S ,≺):

Theorem 6.4.15. If Qa = ra(Pa − I) ≤rst Q′a = r′a(P′a − I) and for all s ∈ S , ra(s) ≤

r′a(s), and if Qb = rb(Pb − I) ≤rst Q′
b
= r′

b
(P′

b
− I) and for all s ∈ S , rb(s) ≤ r′

b
(s), then

Qa+Qb ≤st Q′a+Q′
b
.

Theorem 6.4.16. If Qa = ra(Pa − I) is rate-wise monotone, and for all s ≺ s′ ∈ S ,

ra(s) ≤ ra(s′), and if Qb = rb(Pb − I) is rate-wise monotone, and for all s ≺ s′ ∈ S ,

rb(s) ≤ rb(s′), then Qa+Qb is monotone.

A consequence of the above theorems is that by constructing an upper bound for the

rate function and probability transition matrix of each sequential component for each

action type, we get an upper bound for the CTMC of the entire model when we multiply

out the Kronecker form.
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6.4.2 An Algorithm for Bounding PEPA Components

In this section, we will describe an algorithm for constructing an upper bound for

a steady state property of a PEPA model. This is an extension of the algorithm by

Fourneau et al. that we introduced in Section 5.6.2, in that it constructs, composition-

ally, context-bounded rate-wise upper-bounding rate functions and probabilistic tran-

sition matrices for the components in a PEPA model. It also uses a partially ordered

state space, rather than a total order — we present the algorithm here in the context of

the simple partial order from Definition 6.4.1.

Our algorithm is as follows. We take a PEPA model of the form C1 ⊲⊳
L1
· · · ⊲⊳

Ln−1
Cn.

For each action type a < L1∪ . . .∪ Ln−1, we rename a to the local action type τ— i.e.

we group all local transitions together. Each component Ci has an abstraction (S
♯
i
,αi),

and a simple partial order specified by Bi = {Bi,1, . . .Bi,mi
}.

Algorithm 3 An algorithm for constructing a context-bounded rate-wise upper-

bounding probability transition matrix

y′← |S
♯
i
|

for y← |S
♯
i
| to 1 do

if b(y) = b(Bk) for some Bk then

refresh sum(P,R,b(y),e(y′))

normalise(R,b(y),e(y′))

for p← y′ to y do

normalise partition(R,b(p),e(p))

end for

y′← y−1

end if

end for

1. For each component Ci, we construct a mapping Ii from its state space Si to

matrix indices {1, . . . , |Si| }, so that states in the same partition have contiguous

indices, which are ordered such that s ≺ s′⇒Ii(s) < Ii(s′).

2. We compute a lumpable monotone upper-bounding rate function r′
i,a from the

rate function ri,a of each component Ci and action type a , τ:

r′i,a(s ∈ Bi,k) =max



















mi
⋃

j=k+1

{ri,a(s′) | s′ ∈ Bi, j }∪ {ri,a(s′) | αi(s′) = αi(s) }


















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3. We calculate the internal bound Bint and comparative bound Bcomp for the context

of each component and action type a , τ, using the bounded rate functions.

4. We compute an upper-bounding probability transition matrix Ri,a from the tran-

sition matrix Pi,a of each component Ci and action type a , τ (Algorithm 3).

5. For the internal action type τ, we uniformise the generator matrix Qi,τ of each

component Ci, and apply Algorithm 3 with no context constraints. Since uni-

formisation ensures that every state has the same exit rate, the rate-wise order-

ing and monotonicity constraints reduce to the standard stochastic ordering and

monotonicity — hence we can obtain tighter bounds.

6. We construct and solve the generator matrix obtained by multiplying out the

Kronecker representation of the upper-bounding model7.

It is important to note that not all of the components in the model necessarily need

to have ordering constraints on their state space. For example, if we are interested

in a property of just one component — i.e. the projection from the state space of the

system onto that of the component — then we have no particular constraints on the

probability distributions of the other components. But what does this mean in terms of

constructing a bound for that component? The theorems in the previous section only

account for when we need to bound a component. If we wish to exclude one of the

components, we have to assume the ‘worst’ case — that is to say, that the component

does not have any effect on the rest of the system.

Intuitively, when we bound a component, we maximise the probability of moving

into higher valued states in the ordering. Since cooperation in PEPA takes the mini-

mum of two rates, it is possible for a component to limit, but not increase, the transition

rates for a particular action type. Hence a monotone upper bound for a component is

a true upper bound in the worst case context. This means that we can ignore other

components and still obtain, locally, an upper bound.

Let us examine Algorithm 3 in more detail. This takes as input a probability transi-

tion matrix P, and an empty matrix R (of the same dimensions) in which to construct

the monotone and lumpable upper bound. We assume that the upper bound r′ of the

rate function r has already been constructed, along with the internal and comparative

7To implement this, we explore the transition system generated by the new model, rather than per-

forming the Kronecker multiplications explicitly. This avoids including unreachable states, which would

result in a singular generator matrix.
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Algorithm 4 refresh sum(P,R,b,e)

for Bk←B1 to Bm do

Rmax← max
s∈Bk−1

|S |
∑

j=b

R(s, j)

Pmax←max
s∈Bk

|S |
∑

j=b

P(s, j)

BI ← 1−min























Bint,

max
s∈Bk

r(s)

max
s∈Bk

r′(s)























(1−Rmax)

BC← 1−min























Bcomp,

max
s∈Bk−1

r′(s)

max
s∈Bk

r′(s)























(1−Pmax)

for i← b(Bk) to e(Bk) do

if i ≥ b then

Σnew←max{Rmax,Pmax,BI ,BC }

else

Σnew←max{Rmax,Pmax }

end if

Pnew← Σnew−

|S |
∑

j′=e+1

R(i, j′)

Pold←

e
∑

j=b

P(i, j)

for j← b to e do

if Pold > 0 then

R(i, j)←
P(i, j)
Pold

Pnew

else

R(i, j)← 1
e−b+1

Pnew

end if

end for

end for

end for
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bounds, Bint and Bcomp. We define b(y) and e(y) respectively as the minimum and max-

imum index in the set {I(s) | I♯(α(s)) = y }8. b(Bk) and e(Bk) are defined similarly

for the set {I(s) | s ∈ Bk }.

Algorithm 5 normalise(R,b,e)

for y← 1 to |S ♯| do

Rnew←
e(y)

max
i=b(y)

e
∑

j=b

R(i, j)

for i← b(y) to e(y) do

Rold←

e
∑

j=b

R(i, j)

for j← b to e do

if Rold > 0 then

R(i, j)←
R(i, j)
Rold

Rnew

else

R(i, j)← 1
e−b+1

Rnew

end if

end for

end for

end for

Algorithm 6 normalise partition(R,b,e)

for y← 1 to |S ♯| do

Raverage←
1

e(y)−b(y)+1

e(y)
∑

i=b(y)

e
∑

j=b

R(i, j)

for i← b(y) to e(y) do

for j← b to e do

R(i, j)← Raverage

end for

end for

end for

Algorithm 3 makes use of three sub-procedures:

1. refresh sum(P,R,b,e) (Algorithm 4) ensures that for each ordering block, from

indices b to e, the matrix R is context-bounded rate-wise monotone, and an up-

8I♯ is defined such that I(s) < I(s′)⇒I♯(α(s)) ≤ I♯(α(s′)).
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per bound of P. The core of this algorithm is the computation of Σnew, where the

bounds BI and BC come directly from re-arranging the definitions of context-

bounded rate-wise stochastic ordering and monotonicity respectively (Defini-

tions 6.4.10 and 6.4.11). These additional constraints are only needed for el-

ements on or below the diagonal (i ≥ b), since the −raI term — which is the

reason for the rate-wise extension to stochastic ordering and monotonicity —

only applies to sums that include the diagonal element.

To achieve a new row sum of Σnew, we adjust the individual entries in R so

that the relative probabilities are preserved. This is a choice that we make, to

minimise our impact on the matrix — because we do not have a total order, we

can distribute the probability mass within an ordering block in any way.

2. normalise(R,b,e) (Algorithm 5) ensures that for each partition in the ordering

block from indices b to e, states in the same partition have the same probability

of moving to a different ordering block.

3. normalise partition(R,b,e) (Algorithm 6) ensures that each state in the partition

from indices b to e has the same probability of moving to another partition. We

choose to assign the average transition probabilities.

Essentially, the normalise procedure ensures lumpability of ordering blocks — by ‘bor-

rowing’ probability mass from lower ordering blocks — which preserves monotonic-

ity. The normalise partition procedure then ensures lumpability of partitions, by re-

distributing probability mass within the same ordering block.

We can compare the time complexity of our algorithm to that of Fourneau [69]

from the previous chapter:

Property 6.4.17. The worst case time complexity for Algorithm 3 is O(|S |2), where S

is the state space of the component we apply the algorithm to.

This follows because the refresh sum, normalise, and normalise partition procedures

each contribute O(|S |2) operations in the worst case. In this sense, the additional loop

around normalise partition in Algorithm 3 is misleading. For each ordering block,

we apply normalise to the block, and normalise partition to each partition within the

block — since the number of states in all the partitions within a block is equal to the

number of states within the block, these two procedures result in the same number

of operations. Similarly, note that in the normalise algorithm, whilst there are three
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nested loops, the outermost loop iterates over all the partitions (abstract states), and

the second loop iterates over all the states within a partition — this is consequently the

same as a single loop that iterates over all the concrete states in S .

Recall that the complexity of Fourneau’s algorithm was also O(|S |2), and so we can

see that compositionality and partial ordering do not affect the worst case time com-

plexity, except by a constant factor. We should note, however, that since our algorithm

is applied compositionally, the state space S is only that of an individual component.

This means that overall, the complexity can be much better than a direct application

of Fourneau’s algorithm. If we have n components, each with a state space S , then

Fourneau’s algorithm has a worst case time complexity of O(|S |2n), whereas the com-

positional algorithm has complexity O(n|S |2A), where A is the number of distinct ac-

tion types in the PEPA model. Of course, this does not take into account the cost of

expanding the compositional form, but recall that we only expand the lumped Markov

chain, which is much smaller than the original.

6.4.3 An Example of Stochastic Bounding

As an example, let us return to the PEPA model in Figure 6.1. The generator matrix

has the following Kronecker form, from Equation 6.6, which we repeat below, except

that instead of expanding out the � operator for the independent action type τ, we

express this directly as a Kronecker sum on the generator matrix terms. This is entirely

equivalent, due to Theorem 6.1.1, since the action type is independent throughout the

system equation. We can therefore construct a normal stochastic bound for τ actions,

which will be more precise than in the context-bounded rate-wise case.

Q =





























































0 0 0

r2 −2r2 r2

r3 r3 −2r3































⊕

















0 0

0 0















































+ min





























































ra

0

0































,

















rD

0











































































































0 1 0

0 1 0

0 0 1































⊗

















0 1

0 1

















−































1 0 0

0 1 0

0 0 1































⊗

















1 0

0 1















































+ min





























































rb

0

0































,

















0

rD











































































































0 0 1

0 1 0

0 0 1































⊗

















1 0

1 0

















−































1 0 0

0 1 0

0 0 1































⊗

















1 0

0 1















































Suppose that we want to aggregate states C2 and C3 of the first component, and that

we also want to compute an upper bound of being in either state C2 or C3, and in state
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Figure 6.6: Stochastic upper bound of a PEPA model

D1, in the steady state. This is illustrated in Figure 6.6. We will choose the rates to be

as follows:

ra = r2 = rD = 1

rb = r3 = 2

We can now apply the algorithm we presented, to construct the following upper-

bounding model:
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Note that to bound the D component, we should really permute the rows of the matrix

so that state D1 (our top state) has the highest index — this is not the case here. In iso-

lation, D is already rate-wise monotone, but because it must also be context-bounded,

and it is possible for C to perform or not to perform an a activity, we are forced to

loosen the probability transition matrix for a in the above above. The upper bound

for the internal probability transition matrix is computed using the standard algorithm

of Fourneau et al, as described in Section 5.6.2, since these activities are entirely in-

dependent of any other component. We can now construct the aggregated model as
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follows:
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Multiplying this out, we have a lumped upper bound for the generator matrix Q♯:
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For clarity, the rows of the above matrix are labelled with the states they correspond

to. Notice that the bound is quite coarse, as it results in a bottom strongly-connected

component corresponding to component D being in state D1. If we solve this CTMC,

we find that the probability of component C being in state C{2,3 } is 0.5. This is an

upper bound of the probability of component C being in state C2 or C3 in the original

Markov chain, which is 0.42857. The probability of component D being in state D1

is 1, which is an upper bound of the actual probability in the original Markov chain

of 0.47619. In this small example, the bounds are not particularly tight. In the next

chapter, however, we will see an example of a larger model for which much better

bounds can be obtained, using our tool.

6.5 Summary of Results

In this chapter, we have seen how two techniques for computing bounding abstractions

of Markov chains can be applied compositionally to PEPA models. Abstract Markov

chains are used for model checking CSL/X properties, excluding the steady state oper-

ator, and stochastic bounds are used to bound steady state probabilities. By combining

these techniques we are able to model check all CSL/X properties. Whilst we lose

some precision by performing the abstractions compositionally, it has the advantage

of allowing us to deal with much larger models. In particular, if the state space of the

model is too large to store, we cannot apply the abstraction at the level of the Markov

chain, and so a compositional abstraction is the only viable approach.
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It should be noted that while the results in this chapter are specific to PEPA, the

same techniques can be applied to other stochasic process algebras with relatively mi-

nor modifications. For example, in EMPA [28] only active-passive synchronisation

can occur, and so we should be able to deal with it using a simplification of our con-

struction for PEPA. In TIPP [79], synchronisation results in a multiplication of the

rates (as opposed to taking the minimum), and so we would have to adapt our con-

struction. However, we would expect to obtain properties such as monotonicity more

easily in this case — recall that it was the minimum operator in PEPA that gave us

the greatest difficulties when constructing compositional stochastic bounds. There has

already been work on compositional abstraction of IMC [87] using modal transitions

(essentially, an MDP-based abstraction) [104], and our abstract Markov chain tech-

nique could also be applied.

The work in this chapter addresses an important problem, from both the perspective

of performance-driven development and performance modelling in general. Being able

to analyse extremely large models — such as the ones we extract from program code —

is essential if we are to build a useful framework for performance-driven development.

Most importantly, we need tool support if techniques such as those in this chapter are to

be used in practice. In the next chapter we will describe a tool that we have developed

on top of the Eclipse platform [1], which provides both a graphical interface for our

abstraction techniques, and a model checker for analysing abstracted PEPA models.



Chapter 7

A Stochastic Model Checker for

PEPA

In the previous two chapters, we have examined various methods that allow us to anal-

yse large Markov chains and PEPA models, using state space abstractions. In particu-

lar, we introduced two techniques — abstract Markov chains and stochastic bounds —

that together allow us to compositionally abstract PEPA models so that we can model

check CSL/X properties. To use these techniques in practice, however, it is vital that

we have tool support — and in particular, that we hide the details of our abstractions

away from the user as much as possible. To this end, we will describe in this chapter

our tool for abstracting and model checking PEPA models.

The PEPA modelling language has a long history of tool support, supporting a va-

riety of different analyses. These include the PEPA Workbench [78] for steady state

state analysis, the Imperial PEPA Compiler (IPC) [34] for passage time analysis, and

the PRISM model checker [114]. Recently, efforts have been made to unify the tools

under a common interface, leading to the PEPA plug-in for Eclipse [178]. This sup-

ports both steady state Markovian analysis and time series analysis — using both the

ordinary differential equation semantics of PEPA [92] and stochastic simulation [33].

Currently, the only model checker that directly supports PEPA as an input language

is PRISM [114, 96], although it can only handle models that perform active-passive

synchronisation. The main input language for PRISM is based on a Markov Decision

Process (MDP) [146], and it also supports model checking of DTMCs and CTMCs.

The Markov Reward Model Checker (MRMC) [106] also supports Markov reward

models, and uniform Continuous Time MDPs (CTMDPs). In addition, it uses abstract

CTMCs (ACTMCs) directly as an abstraction — to perform model checking, note

165
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P14
def

= (reg14,r).P14+ (move15,m).P15

P15
def

= (reg15,r).P15+ (move14,m).P14+ (move16,m).P16

P16
def

= (reg16,r).P16+ (move15,m).P15

S 14
def

= (reg14,⊤).(rep14, s).S 14

S 15
def

= (reg15,⊤).(rep15, s).S 15

S 16
def

= (reg16,⊤).(rep16, s).S 16

DB14
def

= (rep14,⊤).DB14+ (rep15,⊤).DB15+ (rep16,⊤).DB16

DB15
def

= (rep14,⊤).DB14+ (rep15,⊤).DB15+ (rep16,⊤).DB16

DB16
def

= (rep14,⊤).DB14+ (rep15,⊤).DB15+ (rep16,⊤).DB16

P14 ⊲⊳
{reg14,reg15,reg16 }

(S 14 ‖ S 15 ‖ S 16) ⊲⊳
{rep14,rep15,rep16 }

DB14

Figure 7.1: A PEPA model of an active badge system

that an ACTMC can be converted into a CTMDP with finite branching if we only

consider the extreme distributions, and this satisfies the same CSL formulae as the

ACTMC [105].

To implement the compositional abstraction techniques that we developed in Chap-

ter 6, we decided to directly extend the PEPA plug-in for Eclipse. This has the advan-

tage of flexibility, since we can completely hide from the user the internal details of

the abstractions used. The cost of building a stand-alone tool is that we had to imple-

ment our own model checker, but this allows us more flexibility in the algorithms we

use. Our tool is the first model checker that natively supports the minimum semantics

of PEPA cooperation, and that performs a compositional abstraction directly on PEPA

models. There is no reason why we cannot also interface to the other model checkers

in the future, and it would be straightforward to output to MRMC, for example.

In this chapter, we will describe our extensions to the PEPA plug-in for Eclipse,

which provide a graphical interface for abstracting PEPA models, and a model checker

for properties in the Continuous Stochastic Logic (CSL) — which was introduced in

Section 5.2. The tool is freely available under the BSD license, and can be downloaded

from http://www.dcs.ed.ac.uk/pepa/tools/plugin. Our extension provides

the following two views:

1. The Abstraction View is a graphical interface that shows the state space of each

sequential component in a PEPA model. It provides a facility for labelling states
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Figure 7.2: The PEPA Plug-In for Eclipse

(so that they can be referred to in CSL properties), and for specifying which

states to aggregate.

2. The Model Checking View is an interface for constructing, editing, and model

checking CSL properties. The property editor provides a simple way to construct

CSL formulae, by referencing states that are labelled in the abstraction view.

Only valid CSL formulae can be entered.

To illustrate how the tool works, we will use the PEPA model in Figure 7.1 as an

example. This is a model of an active badge sensor system, which was first presented

in [44], and consists of five sequential components. In the model, a person (component

P) moves between three corridors, labelled 14, 15 and 16, which are arranged linearly.

Each corridor i has a sensor S i, which listens for a registration signal regi from the

person, and informs the database DB. The state of the database effectively records

where the person was last seen. The model has three rate parameters — r is the rate

at which the badge sends a signal to the sensors, m is the rate of moving between

corridors, and s is the rate at which the sensor updates the database.
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There are a number of interesting questions we might ask of the model. For exam-

ple, what proportion of the time does the person spend in each of the corridors? Or,

what is the probability that the database can move directly from state DB14 to state

DB16, missing the fact that the person must have passed through corridor 15? Since

this particular example has only 72 states, we can easily analyse it directly without

need for abstraction. We will, however, use it as a running example while we describe

the features of the tool in Sections 7.1 and 7.2. We will then discuss the architecture

of the implementation in Section 7.3, before looking at a slightly larger example in

Section 7.4, which better illustrates the power of our abstraction.

7.1 Specifying State-Based Abstractions

In order to construct and check CSL properties of a PEPA model, we need some way

of referring to states of the model. One way of doing this would be to use the names

of the sequential component states in the model, but this could lead to very long and

cumbersome names — especially if we refer to a large set of states. Ideally, we would

prefer to use a single, meaningful name. Our solution is to provide a graphical interface

for labelling sets of states.

An overall view of the PEPA plug-in is shown in Figure 7.2. Here, the active

badge model of Figure 7.1 is open in the editor, and the abstraction view is in use.

The majority of the abstraction view is taken up by a graphical representation of the

sequential components in the system equation of the model. In this case, there are five

components, and each corresponds to a tab in the view. Currently on display is the

database component DB.

On the right of the abstraction view is a table showing the atomic properties for

the model. Right clicking on this table brings up a menu, from which we can define a

new property, or rename or delete an existing one. When we create a new property, the

currently selected states in the graph will initially satisfy it, and the other states will

not. We can change which properties a state satisfies by right clicking on the state —

this allows us to select or deselect the atomic properties, as illustrated in the figure.

An additional feature of the property table is that clicking on a property will high-

light all the states that satisfy it. Clicking on a state in the graph will shade the proper-

ties that it satisfies in green, and those it does not in red. This allows us to quickly see

which states satisfy which properties. It is important to remember that all atomic prop-

erties are defined compositionally. A state in the system satisfies an atomic property if
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Figure 7.3: The abstraction interface

and only if its state in each component does. In Figure 7.2, the property “Left Corridor”

is satisfied by DB14, but not by DB15 and DB16. Since we do not constrain the property

for any of the other components, it is satisfied by all states of the system that have the

database in state DB14. An example would be the state P14 ‖ S14 ‖ S15 ‖ S16 ‖ DB14.

The second function of the abstraction view is, as its name suggests, to specify an

abstraction — namely, which states to aggregate. Figure 7.3 shows a close-up of the

abstraction view, this time for the component P. In this case, we have selected to show

both the actions and the rates on the transitions, but since this leads to a more cluttered

graph these options are not selected by default.

Aggregating states in a sequential component is simply a matter of selecting the

states, and clicking the Aggregate button. They can be separated again by clicking

Disaggregate. Once a set of states have been aggregated, we can only select them as a

group — clicking on any one of the states will select them all. Note that the aggregation

of states is independent of both the labelling of atomic properties1 and the definition

of CSL properties in the model checking view. This means that we can quickly try out

different abstractions — the only thing we need to do is to re-run the model checker

each time.

7.2 Model Checking Abstract PEPA Models

To describe properties of a PEPA model, we need a logic for expressing them. To

this end, we use the Continuous Stochastic Logic (CSL) [16], which we described in

1If we aggregate a set of states when only some of them satisfy a property, the abstract state will

have a truth value of ‘?’ (i.e. it ‘maybe’ satisfies the property).
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Figure 7.4: The CSL property editor

Section 5.2. To illustrate the properties it can express, consider the following formula,

for the active badge model from Figure 7.1. Let us assume that we used the abstraction

view to define the atomic properties Left Corridor and Right Corridor, meaning that

the database is in states DB14 and DB16 respectively:

P=?(Left Corridor U Right Corridor)

This asks the question, “what is the probability that the database will continue to think

that the person is in the leftmost corridor, until it becomes aware that the person is

in the rightmost corridor?” We can construct this formula using the CSL editor, as

illustrated in Figure 7.4.

Classically, for a CTMC, a CSL formula will evaluate to either true or false, or a

probability in the case of the test operatorsΦT . In our case, however, we want to model

check abstract models, hence the test operators will evaluate to a probability interval.

This describes the best and worst case probability of satisfying the formula, based on

the information available in the abstraction. Since this means that we might not know

whether or not the model satisfies a property, we need to use a three-valued semantics

of CSL [105], with truth values of tt, ff and ? (true, false, and maybe).

The aim of the CSL editor is to make it as easy as possible to construct a CSL

formula. In particular, it ensures that we can construct only well-formed formulae. The

buttons on the interface correspond to the various CSL operators and logic connectives,

and are enabled by clicking on the part of the formula we want to edit. Hence we

cannot enter a path formula where a state formula is required, or vice versa, and the

test operators ΦT can only be used at the top level of a formula. The path and state

operator buttons produce a pop-up menu with the available choices — for example,
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Figure 7.5: The model checking interface

timed versus untimed until operators.

The most useful feature of the CSL editor is that it presents us with a list of the

atomic formulae that we defined in the abstraction view. Hence, we can easily refer

to sets of states in the model, using the labels we created. Because the internal data

structures are shared, if we change the name of a property in the abstraction view, it

will automatically be updated in the CSL formulae that use it. Similarly, a property

cannot be deleted from the abstraction view while it is being used in a formula.

Figure 7.5 shows the model checking view, from which the CSL editor can be

opened. The main component of the view is a table of all the properties that are defined

for the model. When the Check Properties button is pressed, all selected properties are

model checked, and the results are displayed next to each property. In this case, we

have not abstracted the model, so the result is very precise — a probability interval

of [0.41615,0.41635]2. The only error here is due to the termination condition of the

model checker itself, and can be improved by modifying the Transient Accuracy field.

If we require more detailed information about the progress of the model checker,

a log is available in the console view. For readability, we reproduce the output of the

console, for model checking the above property, in Figure 7.6. In the next section,

we will briefly discuss the implementation architecture in more detail, but first let us

consider some results obtained by abstracting the active badge model — this is, after

all, the purpose of our tool.

Table 7.1 shows the result of model checking two transient properties of the active

badge model under different abstractions. The first is the same untimed until property

we have been considering up to now (where we shorten Left Corridor to Left, and

2We have validated our results for concrete models against PRISM.
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13:16:04 [badge.pepa] Model added.

13:16:04 [badge.pepa] Model parsed.

13:16:08 [badge.pepa] Kronecker state space derived. Elapsed time: 5 ms.

13:24:36 [badge.pepa] <Model Checker> Generating abstract CTMC...

13:24:36 [badge.pepa] <Model Checker> Optimising uniformisation constant to 7.0...

13:24:36 [badge.pepa] <Model Checker> Generated abstract CTMC with 72 states.

13:24:36 [badge.pepa] Property "P=? [ Left Corridor U Right Corridor ]" was checked in 28 ms.

Figure 7.6: Console output from the model checker

CSL Property Aggregated States State Space Size Probability Interval

P=?(LeftU Right) None 72 [0.41615,0.41635]

{S 14,rep14.S 14 } 36 [0.41615,0.41635]

{S 15,rep15.S 15 } 36 [0.06246,1.00000]

{S 16,rep16.S 16 } 36 [0.00000,0.90004]

All of the above 9 [0.00000,1.00000]

P=?(LeftU[0,1] Right) None 72 [0.03018,0.03019]

{S 14,rep14.S 14 } 36 [0.03018,0.03019]

{S 15,rep15.S 15 } 36 [0.01556,0.03199]

{S 16,rep16.S 16 } 36 [0.00000,0.62023]

All of the above 9 [0.00000,0.63213]

Table 7.1: Abstract model checking of the active badge model

Right Corridor to Right). The second is a timed until property, which states the same

condition, but with the additional constraint that the database must enter state DB16

(the rightmost corridor) within one time unit. For each property, we investigate the

effect of aggregating the states of each of the sensors, and then finally aggregating all

three of them at the same time.

The results clearly show how the choice of abstraction affects the precision of the

bounds. For both properties, abstracting sensor S 14 has no effect on the bounds —

hence we can halve the size of the model without losing precision. The story for the

other sensors is quite different, however. Aggregating S 16 gives a poor bound in both

cases, whereas in the case of S 15 the bound is much worse for the first property than

the second. Finally, aggregating all three sensors results in the largest reduction in the

size of the model, but at the cost of limited information for the second property, and no

information for the first.

We can intuitively see why aggregating S 14 has no affect on the precision, since it

cannot cause the database to move from its initial state. The other two sensors have the
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Figure 7.7: The architecture of the abstraction and model checking engine for

PEPA

power to move the database to a state that satisfies the property (in the case of S 16), or

violates the property (S 15), hence aggregating either of them will have a big effect on

the precision. Having said this, it is not obvious to begin with that it is safe to aggregate

S 14, and in larger models safe abstractions can be even harder to find.

The advantage of our tool is that it allows us to experiment with different abstrac-

tions of the model, without worrying about whether or not it is safe to do so. The

results of the model checker are always accurate, in that the actual probability of satis-

fying the property lies within the interval we obtain. Furthermore, if an abstract model

satisfies or violates a particular CSL property, we can be sure that the original model

also does. In the worst case, we might obtain imprecise bounds, but if we reduce the

size of the model sufficiently, there is very little cost involved.

7.3 Architecture of the PEPA Plug-In

The architecture of our tool follows from a direct implementation of the techniques

in Chapter 6, and is shown schematically in Figure 7.7. The dotted box contains our

addition to the PEPA plug-in, and we show how it interacts with the parts of the existing

tool that we take advantage of — namely, the PEPA editor and parser, and the Markov

chain solvers. There are, of course, many other features of the plug-in that are not

shown in this diagram.
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The key to our approach is in using a Kronecker representation of the state space of

a PEPA model, which we described in Section 6.1. This forms the main data structure,

and all our abstraction techniques take place at the Kronecker level. From this internal

representation, we generate a graph of the structure of each sequential component,

which we call the display model. This is rendered by the abstraction view, which

manages a sequential abstraction of each component, based on the states that the user

is currently aggregating. It also stores the set of atomic properties for the model, which

are shared with the model checking view. The model checking view in turn keeps track

of a set of CSL properties for each model.

To analyse transient CSL properties, we first construct an abstracted Kronecker

state space, and then derive its state space to generate an abstract CTMC. Our model

checker is explicit state, and the basic algorithm uses a value-iteration approach, as

described in [18, 105]. Untimed until properties are verified on the embedded abstract

DTMC, since the exit rates do not affect the validity of the property. As explained in

Section 5.2, we are unable to model check the timed next operator for abstract Markov

chains, due to it not being preserved by uniformisation. We can, however, model

check the untimed next operator by considering the embedded abstract DTMC before

uniformisation.

For steady state CSL properties, the stochastic bounding algorithm operates on

the Kronecker state space directly, to compute a lumpable upper bound, from which

an aggregated CTMC is generated. To compute the steady state, we use the Matrix

Toolkits for Java (MTJ) library [3], which provides a number of solvers including direct

solution (Gaussian elimination), the biconjugate gradient method, and the GMRES

method. In addition, the PEPA plug-in contains simple implementations of Jacobi and

Gauss-Seidel iteration. These solvers are accessed via a factory (in the sense of the

design pattern [75]), which makes it easy to substitute one for another — from the

user’s perspective, this is done by setting an option in the PEPA plug-in.

Because our architecture supports both the abstract Markov chain and stochastic

bounding abstractions, it allows us to model check both transient and steady state CSL

properties — seamlessly from the point of view of the user.

7.4 A Larger Example

To conclude this chapter, we will examine a larger PEPA model. Figure 7.8 is a model

of a round-robin server architecture, where the resources of a single server are shared
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PCi
def

= (arrive,λi).PC′
i
+ (walkon(i+1)modn,⊤).PCi

PC′
i

def

= (servei,⊤).PCi

Serveri
def

= (walkon(i+1)modn,ω).Server(i+1)modn+ (servei,µ).Server′
i

Server′
i

def

= (walk(i+1)modn,ω).Server(i+1)modn

(PC0 ‖ . . . ‖ PCn−1) ⊲⊳
{walkon0,...,walkonn−1,serve0,...,serven−1 }

Server0

Figure 7.8: A PEPA model of a round-robin server architecture

between n computers. The server moves around each computer in turn — if there

is a job waiting, it services it before moving onto the next computer. Jobs arrive at

computer PCi at rate λi, and the service rate of the server is µ. The server moves

between computers at rate ω.

Consider this model when n = 6, in which case the concrete PEPA model has 768

states. To avoid any symmetry in the model that could allow a more exact aggrega-

tion — for example, using compositional bisimulation minimisation [36] — we will

assume that every computer has a different arrival rate, λi = i+1. Table 7.2 shows the

results of model checking the following properties:

Φ1 = S=?(Server′)

Φ2 = P=?(ttU[0,0.1] Server2)

Property Φ1 looks at the proportion of time spent in a Server′ state, where the server

has completed a job, but has not yet moved to the next computer. Φ2 looks at the

probability that the server will reach PC2 within the first 0.1 time units (given that it

starts with PC0).

Looking at the steady state property first, we see that aggregating all the Server′

states gives a good upper bound on the actual probability. Although the lower bound

provides no information, this would be a useful result if we were interested in verifying

that the server spends no more than a certain proportion of time in a Server′ state. This

is especially true when we consider that the state space has been reduced by 99%. The

other choices of aggregation yield poor results, however, which illustrates how the best

abstraction depends entirely on the property we are analysing. Note that the extreme

reduction in the size of the state space comes about because the steady state abstraction

considers only the server component in the worst case context — hence it gives a large

reduction in the state space, at the cost of precision.
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Property Aggregated State Probability Verification

States Space Interval Time (ms)

Φ1 None 768 [0.31184,0.31184] 1000

{Server′
0...5
} 7 [0.00000,0.33333] 46

{Server0...5 } 7 [0.00000,0.75000] 47

{Server′
2...5
,Server3...5 } 6 [0.00000,1.00000] 47

Φ2 None 768 [0.53940,0.53941] 188

{Server′
0...5
} 448 [0.51954,0.54567] 109

{Server0...5 } 448 [0.00000,1.00000] 109

{Server′
2...5
,Server3...5 } 384 [0.53940,0.53941] 110

Table 7.2: Abstract model checking of the round-robin server model

If we look at the second property, by comparison, we see that we achieve the best

results when we abstract all the states following Server2, but before Server0. In this

case, we can halve the state space without affecting the precision. In fact, since Ta-

ble 7.2 only looks at aggregating states on the server, we can do even better. If we

aggregate the computer states for PC2 . . .PC5, we can reduce the state space to just 24

states (a 97% reduction in size) without affecting the precision. The reason we can

achieve such good results here, is that after the server passes through the Server2 state,

the property must be satisfied — hence we can ignore all subsequent states. The ab-

straction view allows us to take advantage of this aggregation very quickly, without

requiring any modifications to the model.

The main limitation with our tool at present is that we have not optimised the data

structures for the explicit represention of the state space of a model. We only use an

in-memory representation (as opposed to, for example, using disk storage), and we

find that we run out of memory when we deal with models that have tens of thousands

of states. Our abstraction techniques can scale easily to very large models, since they

operate on the Kronecker representation of the model, but we need to improve the

efficiency of the model checker — particularly with regard to memory usage — if our

tool is to be of practical use. The main reason for developing this tool, however, was

to demonstrate the applicability of our abstraction, and to that end we have succeeded.

There is clearly much future work to be done, however, in improving its functionality

and performance.
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Conclusions

“Software developers care too little about performance until it is too late!”

Given the motivation of this thesis, one might be forgiven for jumping to such

a provocative conclusion. But although performance evaluation is often under-

prioritised in software development projects, to say that the developers do not care

about performance is not only wrong, but completely misses the point. The fact is

that they simply do not have access to many of the tools, methods, and techniques that

would enable them to reason about performance. Hence we could just as easily jump to

an equally provocative conclusion, by saying that computer scientists and performance

modellers care too little about supporting real-world software development!

Of course, this statement is just as blatantly untrue as the first. In reality, both soft-

ware developers and performance modellers care very strongly about bridging the gap

between theory and practice. In the case of developers, there is a clear need for some-

thing more disciplined than current performance testing and tuning practices, even if

they do not know where to look for a solution. In the case of performance modelling,

there have been concerted efforts to promote disciplines such as software performance

engineering, and to include performance information in specification languages such

as UML. We spent the majority of Chapter 2 talking about such issues, and it should

be clear that people have been working on these problems for a considerable time.

The goal of this thesis, however, has been to motivate the next step in bridging this

gap. If developers are to fully utilise the capabilities of performance modelling and

evaluation, they need techniques that are as easy to use as possible, and that relate to

the languages that they are already used to. This ultimately means that they need tool

support that can deal directly with program code, if the uptake is to be as great as pos-

sible. Whilst we are a long way from a practical solution to this problem, our current

177
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knowledge in fields such as program analysis, performance modelling, and stochastic

model checking is at a stage where we should be making progress in addressing it.

At the outset in Chapter 1, we proposed a framework for performance-driven de-

velopment, where the central idea is to abstract program code to a performance model.

By looking at a hypothetical software engineering process that could be used in con-

junction with more traditional qualitative methods, we could then try to address some

of the challenges involved. To this end, our focus in this thesis has been on two of the

most important problems: firstly, how to automatically extract a performance model

from program code, and secondly, how to reduce the size of large performance models

so that they can be analysed. Central to both is the notion of abstraction.

Of course, these two problems are too general to be tackled directly, and so we

have restricted our attention to one specific programming language and one specific

modelling language. Our programming language — S, the Simple Imperative Re-

mote Invocation Language — allows statically defined objects, or resources, which

each consist of a number of methods that can be invoked via remote procedure calls.

Methods have local integer variables, and can perform linear arithmetic operations on

them, but we do not allow looping behaviour at this point. Our modelling language —

PEPA, the Performance Evaluation Process Algebra — is a simple and widely used

formalism for compositionally specifying continuous time Markov chains.

The contributions of this thesis can be split into two parts, corresponding to these

two problems. Chapters 3 and 4 showed how we can use abstract interpretation in

combination with measure theory to derive a PEPA model from a S program. Chap-

ters 5, 6 and 7 then showed how to compositionally abstract PEPA models with a view

to model checking properties in the Continuous Stochastic Logic (CSL). One of the

interesting ideas here is that we effectively combine the strengths of static analysis and

model checking — static analysis has the advantage of being able to work directly with

program code, whereas model checking has the advantage of using temporal logics to

allow a rich specification of properties. In our case, we use static analysis to derive

a more abstract representation of the program, and model checking to verify it with

respect to some property of interest.

In this chapter, we will begin by summarising the main results of the thesis in

Section 8.1. In Section 8.2 we will discuss in more detail how our techniques could

be built upon and extended in the future, in addition to looking at the major challenges

of performance-driven development that are yet to be faced. Finally, we will end with

some concluding remarks, in Section 8.3.
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8.1 Summary of Results

The main results and ideas presented in this thesis are as follows. We began in Chap-

ter 1 by motivating the need for performance-driven development, and outlining the

structure of a software development process through which this could take place. This

consists of four main stages — abstraction from code to a performance model, special-

isation of the model, analysis of the model, and refinement of the code based on the

results of the analysis.

In Chapter 3 we introduced the S language, and a semantics in terms of proba-

bilistic automata. This is a novel extension of Kozen’s semantics of probabilistic pro-

grams, where a program is viewed as a continuous linear operator over measures — in

general, mapping a distribution over the initial state of a program’s variables to a sub-

probability measure corresponding to the state of the program if it terminates. While

Kozen’s semantics is entirely denotational, our semantics introduced an automaton

structure, where transitions between stages are labelled with measure transformers.

This can be viewed in two ways — either as a purely computational device for de-

scribing operators over measures, or as a control flow graph structure, where stages

correspond to program points.

After developing this semantics, we proved that the outgoing transitions of a stage

preserve the total measure. This allowed us to present a discrete time probabilistic

interpretation of the semantics, in which transitions are labelled with a probability —

given by the ratio of the total measure before and after the transition. A continu-

ous time interpretation can similarly be constructed by assigning rates to stages in

the probabilistic automaton. We then discussed how we might construct a collecting

semantics that projects the probabilistic interpretation onto the state space of an indi-

vidual method, so as to regain the compositionality of the S program.

Since it is computationally infeasible to represent and operate on arbitrary mea-

sures, we presented an abstract interpretation of S programs in Chapter 4. The key

idea is to use truncated multivariate normal measures, which can be compactly repre-

sented, and are closed under abstract linear and truncation operators. Intuitively, the

underlying multivariate normal measure records the dependencies between variables,

and the truncation intervals record constraints on the values of the variables. We pre-

sented an abstract semantics of S, and an abstract interpretation that induces a safe

over-approximation of the concrete interpretation, with respect to the measures that

occur at each state.
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To construct a PEPA model from our abstract interpretation, we presented an ab-

stract collecting semantics. This takes place in two stages — we first project the ab-

stract interpretation onto the state space of each individual method (labelling the tran-

sitions with input and output measures), then we map each projected transition system

onto a sequential PEPA component. In constructing an overall PEPA model from these

components, we showed how a number of simple transformations at the modelling

level can be used to analyse the program’s performance in the context of multiple users

and resources. Finally, we discussed how our approach could be modified to generate

an MDP-based model containing non-determinism.

In Chapter 6, we presented a compositional abstraction framework for model

checking CSL properties of PEPA models. We began by presenting a general Kro-

necker form for PEPA, that allows the generator matrix of the underlying CTMC to

be described compositionally. Our abstraction combines two different techniques —

abstract Markov chains, which can be used to analyse transient CSL properties, and

stochastic bounds, which can be used for steady state properties. In both cases, we

showed how to compositionally construct an abstraction of a PEPA model, and proved

that the abstraction is safe. In the case of stochastic bounds, we generalised the algo-

rithm of Fourneau et al. so that it can be applied to a partially ordered state space, and

to the particular stochastic ordering constraints that our abstraction requires.

We have implemented a tool for abstracting and model checking PEPA models —

described in Chapter 7 — which is an extension to the PEPA plug-in for Eclipse. This

provides a graphical interface for specifying sets of states to aggregate in a component-

wise fashion, and for labelling atomic properties so as to make it easier to construct

CSL formulae.

8.2 Evaluation and Future Work

In this section, we will examine some of the ways in which the work in this thesis

can be extended and improved upon, as well as identifying some directions for future

research. In Sections 8.2.1 and 8.2.2 we will look at the two main areas of contribution

in this thesis — respectively, stochastic abstraction of programs, and stochastic ab-

straction of performance models. We will then briefly discuss the relationship between

static analysis and model checking in Section 8.2.3, before looking at how we could

build tool support to facilitate performance-driven development in Section 8.2.4.
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8.2.1 Stochastic Abstraction of Programs

We have seen in Chapters 3 and 4 of this thesis how to extract a PEPA model from a

language called S. This is quite a simple language, in that it allows only immutable

objects, remote procedure call (RPC) style invocation, integer variables, and loop-free

method bodies. Despite this, we can perform some useful analyses of distributed sys-

tems whose inputs are governed by a probability distribution. There are many inter-

esting and open research problems that need to be addressed, however, before we can

apply our techniques to industrially relevant programming languages.

Recall that when we presented our framework for performance-driven development

in Chapter 1, we identified S as an intermediate language — between an implemen-

tation language and a performance modelling formalism. With this in mind, we will

discuss two key areas for future work in this section. The first is how we might extend

the S language and its analysis so as to relax the restrictions in this thesis. The

second is how we can move to real implementation languages such as C, C++, and

Java, which involves dealing with more complex language features. We will consider

each of these in turn, starting with the extensions to S.

From a practical point of view, the most important features that S currently

lacks are loops and mutable objects. Note that if we had both of these features, we

could easily model a more general message-passing style of communication by using

mutable ‘channel’ objects. Sending a message would correspond to calling a method

that changes the object’s state, and receiving a message would correspond to a method

that queries its state — either returning immediately with the possibility of failure

(an asynchronous receive), or blocking until there is a message to receive, by polling

the state (a synchronous receive). Furthermore, we can always program non-linear

arithmetic operations if we have loops in our language. We previously attempted to

analyse both loops and mutable objects using the techniques in this thesis, but we ran

into a number of difficulties, which we will now discuss.

When we first presented the ideas of Chapter 4 in [170], we did so in terms of a

language containing while-loops. As far as the concrete and abstract semantics of this

language is concerned, there is little difference to that presented in this thesis — we

just include additional states in the probabilistic automaton of a program, to account

for re-entering loops. We describe this in Appendix A. For the abstract interpreta-

tion, however, the situation is much more complicated. We cannot simply ‘run’ the

abstract interpretation as it stands, since there is no guarantee that it will terminate in
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the presence of loops. To ensure termination, we need a way of over-approximating

the possible measures within a loop, using a widening operator [157].

This is a standard device in abstract interpretation, but the nature of our domain

makes it difficult to apply generally. If we want to avoid expanding out a loop, we

could consider associating a multiset of measures with each stage in the probabilistic

automaton of a method. Intuitively, this means that we store the measures for all

iterations of the loop. For simple classes of loop, such as an iterative counter, where

we can predict what the future measures will be given the current measure, suitable

widening functions allow us to ‘jump’ to a set of measures that over-approximates

these [170]. Unfortunately, this approach has a number of drawbacks:

1. We need a compact way of representing multisets of measures.

2. We require a widening operator that is individually tailored for each loop, if we

are to avoid too gross an over-approximation. In general, this requires us to infer

loop invariants, and this is made particularly difficult when there are conditional

statements within the loop.

3. When we exit a loop, we would like to return to a single measure, so that it can

be transformed by future measure operators. Unfortunately, such a measure will

be mixed truncated multivariate normal in general, which does not exhibit the

same nice properties as a truncated multivariate normal measure.

It is interesting to add to the latter point that mixed multivariate normal distributions

are routinely used in the context of Hidden Markov Models (HMMs) with Gaussian

observations [148]. It might therefore be possible to use some of the techniques from

this area in order to deal with mixed measures.

Based on the difficulties that we encountered, it appears that a direct extension of

our technique in the context of loops is not a good way to proceed. That is not to say

that all is lost, however — it just means that we need to look at different techniques

for this situation. One idea might be to first transform loops so that the operation of

the body is idempotent, in that executing it multiple times gives the same result as exe-

cuting it once. This would mean that we could ignore the possibility of re-entering the

loop when computing the measures. Such a transformation would clearly not preserve

the semantics of the program, however, and so we would need to make some appropri-

ate abstraction — such as taking the ‘average’ values of loop-counters, and making the

guard of the loop a pure probabilistic choice. The key idea is to combine a different
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static analysis technique with our abstraction, and it would be interesting to investigate

the extent to which this is possible.

Compared to the problem of loops, analysing programs with mutable objects ap-

pears to be a much more straightforward extension to S. Indeed, in the absence of

loops, we could apply the same approach of Chapter 4 — performing a system-level

abstract interpretation, and regaining compositionality through the collecting seman-

tics. This would just require some minor modifications to maintain the state of each

object in the corresponding PEPA component. The real difficulty, however, is when we

want to combine mutable objects and loops, for which we need a better solution.

An approach that we considered in the past was to try to perform the abstract inter-

pretation itself compositionally. In other words, rather than interpreting the program

as a whole, we can interpret each method individually to reach a local fixed point, then

compute a global fixed point of the system by chaotic iteration [51]. Such an approach,

however, introduces a great many additional problems — for example, we need to keep

track of temporal dependencies between variables if we want to avoid considering far

more execution paths than are possible in practice. This is essentially the same prob-

lem as found in interprocedural data-flow analyses [133], except that we additionally

have a more complex domain of truncated multivariate normal measures.

An additional limitation of the approach presented in this thesis is that we store and

manipulate measures over the entire state space of the system. While this simplifies our

mathematical presentation, it is not very practical, as it means that we always record the

state of every variable in every method, leading to very large data structures for each

measure. In most programs, however, there is limited coupling between variables in

different methods, and so we should hope to find much more efficient representations.

It makes sense, however, to only do so at the implementation level, since the explicit

representation is mathematically more straightforward to reason about.

We have now discussed in some detail how the S language and our analysis

could be extended to a richer set of language features. This is still a long way from real

implementation languages, however, and so we need to find ways to bridge this gap.

To this end, we will consider how we might develop abstractions from languages such

as C, C++, and Java into S, or an extension of it.

The difficulty with many program languages is that they lack mathematical ele-

gance in favour of practical features. This is not so much of a problem for Java, but C,

for instance, does not enforce type safety, and its semantics is in some places ambigu-

ous — to the extent that different compilers produce different results. Fortunately, there
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has been a great deal of work in attempting to address such problems — in particular,

the C Intermediate Language (CIL) [130] was developed as a means of transforming

programs into a simplified subset of C that avoids these problems. In light of such tools,

the main research challenges are to deal with more general language features such as

enriched sets of primitive types, data structures on the heap, and object orientation.

In relation to the first of these points, it would be quite straightforward to include

additional primitive types such as Booleans and floating points in S. If we take the

abstraction that a floating point is a real number — i.e. we ignore numerical issues —

then our semantics can deal with this case already1. Boolean variables could be mod-

elled as discrete random variables, by viewing them as predicates that hold with a

certain probability. This would require some modifications to our domain of measures,

but would otherwise be a straightforward extension of S.

The main challenge for future research is to deal with the heap — such as pointers,

more complex data structures, and virtual methods. For these, there already exist vari-

ous static analysis techniques, such as the Three-Valued Logic Analyser (TVLA) [117]

and separation logic [149]. These have been applied to applications such as shape

analysis of linked lists [61] and trees [39], and analysis of pointer arithmetic [38].

We would therefore need to look at ways of combining these techniques with ours —

ideally, we would like to know the probability that a pointer points to a particular

location. Note that handling object orientation essentially amounts to being able to

deal with mutable objects, more complex data structures, and pointers (in the sense of

virtual methods and inheritance).

Finally, an important practical issue is to determine which parts of a program to

analyse — from the point of view of constructing a performance model — and what

to do about partially-completed code. In [169], we suggested a system of annota-

tions, allowing the developer to specify such information directly. This is not an ideal

approach, however, since it potentially requires a lot of work on the part of the de-

veloper. We will discuss some possible approaches to this problem in more detail in

Section 8.2.4, when we talk about tool support for performance-driven development.

8.2.2 Stochastic Abstraction of Performance Models

There are many techniques for abstracting performance models, but in this thesis we

have focussed on just two approaches in particular — abstract Markov chains, and

1We would only need to modify the semantics of comparison in this case, by eliminating the conver-

sion of an integer constant c to a real interval [c−0.5,c+0.5].
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stochastic bounds — and how they can be applied compositionally to PEPA models.

This idea of compositional abstraction allows us to avoid constructing the entire state

space of the model, and can therefore allow us to analyse much larger systems than be-

fore. This idea could in theory be applied to any compositional performance modelling

formalism, and not just PEPA — for example, abstract Markov chains have recently

been applied compositionally to Interactive Markov Chain (IMC) models [104].

The main difficulty with state-based abstraction techniques, however, is that their

precision depends very much on which states we try to aggregate. Our approach was to

develop a graphical interface to allow the modeller to quickly experiment with different

aggregations, which we presented in Chapter 7. Ultimately, however, we would like to

be able to automatically select a good choice of states to aggregate.

One recent approach that has been successful is to extend the ideas of

counterexample-guided abstraction-refinment (CEGAR) [22, 86] to probabilistic mod-

els [89, 107, 182]. As in the qualitative setting, the idea is to begin with an initial coarse

abstraction, which is then incrementally refined by eliminating spurious counterexam-

ples. Eventually, either the property of interest will be verified, or a real counterexam-

ple will be found. Unlike in the qualitative setting, however, a probabilistic counterex-

ample is a set of paths whose combined probability violates a property, rather than

an individual path. There has been some work on compact representations for these

counter-examples, using regular expressions [55].

This approach, however, is restricted to probabilistic reachability properties, as

opposed to performance properties in general. These are certainly useful though, as

they include the transient properties of CSL. It would be of interest to see whether

we could combine this approach with our compositional abstraction, so that it could

potentially be applied to larger models.

When verifying steady state properties, abstraction techniques are much more dif-

ficult in general, as can be seen by the number of constraints we needed to impose in

Chapter 6, so as to compositionally construct stochastic bounds. Due to the quite strict

requirements of the strong stochastic ordering, there has been some work on weak-

ening this, particularly in the context of Markov reward models [53, 52]. The idea is

to relax the requirement of montonicity by replacing it with a weaker condition — if

two states are related under a partial ordering on the state space, then the greater state

must “cover” the lesser state with respect to the accumulated reward. This is a weaker

condition than monotonicity over a partial ordering, as in this thesis, and it would be

worthwhile to see whether our compositional approach for PEPA could be lifted to it.
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In practice, most applications of stochastic bounds are in relation to particular mod-

els for which specialised bounds can be constructed for specific properties [37, 119].

We have found with our approach that general algorithms tend to give very loose

bounds much of the time, which would suggest that stochastic bounds are not a com-

plete solution to our problem. They are, however, useful for quickly obtaining rough

bounds in relation to individual components of the model. One interesting direction

for future research would be to look at steady state properties in terms of long-run

averages of an MDP [7]. This would allow us to verify such properties by adapting

the existing algorithms for model checking MDPs and abstract Markov chains — and

potentially, also the probabilistic CEGAR approaches.

In this thesis we have concentrated on safe abstractions, but an alternative approach

we might take is to look for close abstractions. This is characterised by the work on

probabilistic abstract interpretation [141], which applies the idea of abstract interpre-

tation to a vector space rather than a complete lattice. This gives a natural notion of

metrics, allowing the concept of a “closest” abstraction. It would be valuable to in-

vestigate whether such techniques can be applied in our setting — one question in

particular is whether steady state properties can be compared under this approach.

8.2.3 Static Analysis versus Model Checking

In this thesis, we have looked at both static analysis and model checking in the con-

text of performance. As we commented in Chapter 4, there have been relatively few

applications of static analysis in the context of probabilistic and stochastic systems,

in contrast to the vast literature on probabilistic and stochastic model checking. The

main reason for this is most likely that performance is a property of an entire system,

including both the program code and the environment that it runs in. Hence it is more

natural to construct a model of the system, which includes the environment, and to

verify performance properties using model checking.

Even given this dependency on the environment, however, it is possible to analyse

probabilistic properties of a program using a combination of static analysis and model

checking. One example of this is probabilistic CEGAR, which we discussed in the

previous section, and another is the static analysis of Chapter 4, coupled with stochas-

tic model checking, as presented in this thesis. In both cases, static analysis is used

as a means of constructing a performance model, which is then verified in relation to

a particular property. The main difference, aside from the abstractions used, is that
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probabilistic CEGAR has a feedback loop — the model is generated with a fixed prop-

erty in mind, and then refined in relation to this property, using counterexamples from

model checking. Our approach gives a more general model, for which we can model

check a wider range of properties, at the cost that the model may be much larger.

In the context of quantitative analysis of software, it seems likely that many of the

major advances in the future will come from an application of both static analysis and

model checking. This is therefore an important research area to pursue.

8.2.4 Tool Support for Performance-Driven Development

As we have repeated on a number of occasions throughout this thesis, tool support

is essential if we are to make performance-driven development viable in practice. In

particular, it is important to support the integrated development environments that are

popular with developers, such as Visual Studio [4] and Eclipse [1]. In Chapter 7, we

described an Eclipse plug-in for abstracting and model checking PEPA models, but to

really make our techniques accessible to developers, we need direct tool support at the

level of program code.

Although we did not present an implementation of the techniques in Chapters 3

and 4 in this thesis, we did develop the theory to support it. We discussed the challenges

of lifting these techniques to industrial implementation languages in Section 8.2.1, but

we additionally need an intuitive and easy-to-use interface for developers. There are

two key aspects here — gathering the required information to carry out a performance

analysis, and presenting the results of the analysis back to the developer.

The first of these entails asking the developer for information — most importantly,

which parts of the code to analyse, how to interpret partially-written code, and what

properties to check for. The first two could be specified using annotations, but it might

be difficult to convince developers to invest the time and effort to do so. If there exist

specification documents such as UML diagrams, we could instead try to extract the

information — for example, only modelling the classes used in a particular diagram,

or using timing information from the specification when there is no code available.

Specifying performance properties is also very difficult to make intuitive. The ap-

proach that we took in Chapter 7 can be useful for modellers, but logics such as CSL

are certainly not intuitive to developers. Similarly, approaches such as performance

trees [175] and probabilistic specification patterns [83] still require a certain under-

standing of probabilities and statistics that developers may not have. One idea that
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might be worth pursuing is to construct an analogue of the unit testing framework. In

other words the developer writes a test that invokes the system in a certain way, and

either collects some performance information (such as the utilisation of a server) or as-

serts that certain performance requirements must hold (such as the server responding

within one second with a 99.9% probability). This could be based on the ideas in [6],

for specifying the probability of observing events, and the time between them. Finding

an appropriate language to express this would of course require careful consideration.

Once we have verified a performance property of the program, we then need to

relate this information back to the developer. The result itself is easy to convey — for

example, pass or fail — but the challenge is to explain why that is the case. There is a

great deal of scope for adapting interactive debuggers to present such information, but

this is really a very open problem, and it is not clear what the best approach would be.

Overall, there are a great many questions to be answered in developing tool support

for performance-driven development, some that are research problems, and others that

are engineering challenges. But if we can develop performance analysis techniques to

the extent that they can be applied to industrial development projects, the time invested

in answering these problems will more than pay for itself.

8.3 Concluding Remarks

We began this thesis with a grand vision — one in which software developers have the

tools and techniques at their disposal to be able to build distributed software systems

that are engineered to perform. Our goal was to demonstrate that current techniques in

static analysis, performance modelling, model checking, and abstraction can be com-

bined and used to make this vision a reality. In doing so, we have developed various

new ideas — such as using truncated multivariate normal distributions in program anal-

ysis — and extended various existing ideas — such as making certain Markov chain

abstractions compositional. But the most important contribution is that we have illu-

minated the potential to bring our techniques to developers. It is simply unrealistic to

expect the developers to come to us.

In this thesis we have made an important step towards our vision of performance-

driven development, despite there being many research problems that remain open. Yet

this step could be the first of many, and we hope that by encouraging the combined ap-

plication of a wide variety of techniques, the computer science community as a whole

will be able to revolutionise the treatment of performance in software development.
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stochastic systems. In FORMATS ’09: Proceedings of the 7th International

Conference on Formal Modeling and Analysis of Timed Systems, pages 195–

211, Budapest, Hungary, 2009. Springer-Verlag.

[105] J.-P. Katoen, D. Klink, M. Leucker, and V. Wolf. Three-valued abstraction

for continuous-time Markov chains. In W. Damm and H. Hermanns, editors,

Proceedings of 19th International Conference on Computer-Aided Verification

(CAV’07), volume 4590 of Lecture Notes in Computer Science, pages 316–329.

Springer-Verlag, 2007.

[106] J.-P. Katoen, I.S. Zapreev, E.M. Hahn, H. Hermanns, and D.N. Jansen. The ins

and outs of the probabilistic model checker MRMC. In QEST ’09: Proceedings

of the Sixth International Conference on the Quantitative Evaluation of Systems,

pages 167–176. IEEE Computer Society, 2009.

[107] M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker. Abstraction re-

finement for probabilistic software. In N. Jones and M. Muller-Olm, editors,

Proceedings of the 10th International Conference on Verification, Model Check-

ing, and Abstract Interpretation (VMCAI’09), volume 5403 of Lecture Notes in

Computer Science, pages 182–197. Springer-Verlag, 2009.

[108] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer-Verlag, 1976.

[109] L. Kleinrock. Analysis of a time-shared processor. 11:59–73, 1964.

[110] L. Kleinrock. Queueing Systems, Volume I: Theory. Wiley Interscience, New

York, 1975.



200 Bibliography

[111] D.E. Knuth. Structured programming with go to statements. ACM Computing

Surveys, 6(4):261–301, 1974.

[112] D. Kozen. Semantics of probabilistic programs. Journal of Computer and Sys-

tem Sciences, 22(3):328–350, 1981.

[113] V. Kutsyy. com.kutsyy: A Java interface to latent variable spatial ordinal data

(lvsdod), 2001. http://www.kutsyy.com/java.

[114] M.Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic

model checker. In Computer Performance Evaluation: Modelling Techniques

and Tools, volume 2324 of Lecture Notes in Computer Science, pages 200–204,

2002.

[115] S.S. Lavenberg and M.S. Squillante. Performance evaluation in industry: A per-

sonal perspective. In Performance Evaluation: Origins and Directions, pages

3–13. Springer-Verlag, 2000.

[116] G.T. Leavens, A.L. Baker, and C. Ruby. JML: A notation for detailed design.

In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioural Specifications of

Businesses and Systems, pages 175–188. Kluwer Academic Publishers, 1999.

[117] T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses.

In Procedings of the 7th International Static Analysis Symposium (SAS 2000),

volume 1824 of Lecture Notes in Computer Science, pages 280–301. Springer,

2000.
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Appendix A

Extending S with Loops

In this appendix, we will extend the S language so that it contains loops, and dis-

cuss the problems that arise with our abstract interpretation in this context. We will

show how to extend both the probabilistic semantics of Kozen and our probabilistic

automaton semantics — both in the concrete and abstract cases. We will then discuss

the issues that arise when we try to construct a memoised abstract interpretation that

guarantees termination in the presence of loops. The work described here is based on

that published in [170].

Let us begin by extending the syntax of commands, to include a while-loop:

C ::= · · · | while B do C

We can give this a denotational semantics as per Kozen [112], in terms of a least fixed

point in the usual Scott-Strachey style. To construct this, we first define the following

function, which takes an operator on measures, W, as its argument:

f (B,M)(W) = eJ¬BK+W ◦M ◦ eJBK

Here, B is a boolean condition (hence the operator eJBK is defined), and M is an operator

on measures. We can define the semantics of a while-loop as the least fixed point of

this function, with B and M corresponding to the loop condition and the body of the

loop respectively:

Jwhile B do CKp = lfp( f (B,JCKp))

The least fixed point operator computes the measure W such that f (B,JCKp)(W) =W.

The proof that such a fixed point exists, and is unique, is given in [112].

We can also extend our probabilistic automaton semantics to deal with the while-

loop. Intuitively, we can avoid the above fixed point construction by introducing an

207
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O. f(X) {

N := 10;

Y := N −X;

while (Y > 0) do

X := X+1;

Y := N −X;

return X

}

Figure A.1: An example S method with additive looping behaviour

additional stage into the automaton, corresponding to the entry point of the loop. Note

that we will not give a label to this stage, as we did for those corresponding to remote

procedure calls, since its behaviour is internal to the method. We can represent the

looping behaviour by a cyclic transition relation, which re-enters the loop after com-

puting its body, by returning to this stage. If we were to unroll the loop, we would

effectively compute the fixed point, as done explicitly by Kozen. The probabilistic

automaton semantics is as follows, where s∗ is a fresh stage:

JO. f | while B do CKS
pa = JO. f |CKS

pa∪{ s
∗ }

JO. f | while B do CKT
pa = {�

eJBK
−−−→ s∗ } ∪ {�

eJ¬BK
−−−−→ � } ∪

{ s∗
M
−−→ s | �

M
−−→ s ∈ JO. f |CKT

pa } ∪

{ s
eJBK◦M

−−−−−−→ s∗ | s
M
−−→ � ∈ JO. f |CKT

pa } ∪

{ s
eJ¬BK◦M

−−−−−−−→ � | s
M
−−→ � ∈ JO. f |CKT

pa } ∪

{ s
M
−−→ s′ ∈ JO. f |CKT

pa | s , �∧ s′ , � }

The abstract semantics JO. f | while B do CK
♯
pa is the same as the above, except that

we replace eJ·K with e
♯

J·K
and J·Kpa with J·K

♯
p.

Up to this point, there are no difficulties with extending S with loops — both

in terms of its concrete and abstract semantics. The problem comes when we try to

interpret its abstract semantics, since there is no guarantee that it will terminate. Effec-

tively, we can carry out the interpretation as presented in Section 4.4, but we would be

unrolling the loop to construct all possible measures on all possible iterations, leading

to an infinite state Markov chain.

As an example of this, Figure A.1 shows a small S program, alongside its con-

trol flow graph, which takes an input variable X, and increments it until it reaches the
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value 10. If the initial value of X is greater than 10, it exits immediately rather than

entering the loop. This is a single-threaded program, and we only need to keep track

of the state of three variables — X, Y and N. Note that Init corresponds to stage �O. f

in the probabilistic automaton of the method O. f , and End corresponds to �O. f .

Before we can execute the abstract semantics, we need to define the initial distri-

bution of the method’s argument, X. For simplicity, let us assume that X initially has

a mean of zero and a variance of one, and is not truncated — i.e. X ∼ T [⊥,⊤]N1(0,1).

The initial measure over the method’s variables is then the following truncated multi-

variate normal measure:































X

N

Y































∼ T





























































⊥

⊥

⊥































,































⊤

⊤

⊤





























































N3





























































0

0

0































,































1 0 0

0 0 0

0 0 0





























































This notation is an explicit expansion of the form X ∼ T [a, b]N|X|(µ,Σ), for our case

when X = [X,N,Y]T . The non-argument variables are initialised to have zero mean and

variance, as per Equation 4.3.

After taking the first transition, from the Init to Loop, the measure is transformed

into the following:
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Three changes have occurred — N has been assigned the constant value 10, Y is now

equal to N−X, and the condition Y > 0 has been applied. Recall that since the measure

we describe is continuous, we treat an integer value a as corresponding to the interval

[a− 0.5,a+ 0.5], hence the truncation of [−0.5,⊤] for the condition Y > 0. Note that

Cov(X,Y) = −Var(X) = −1, capturing that Y is negatively correlated with X.

Although it is possible to go directly from the Init to End, the probability is so

small that we will ignore that possibility — from an implementation point of view, this

corresponds to discarding measures whose total weight is below a certain threshold ǫ.

Strictly speaking, this is not a safe thing to do from the point of view of the abstract

interpretation, but we can consider ǫ to be a parameter that determines the numerical

accuracy of our technique.

We can now observe how the measure changes as we execute the body of the loop
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Figure A.2: Termination of a memoised abstract interpretation
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If we continue this way, we will completely unfold the loop, and explicitly construct

the measure at each iteration. This is clearly undesirable for larger and more complex

programs, as we cannot guarantee termination.

Rather than explicitly unfolding the loop like this, we would like instead to ‘predict’

the possible measures that can occur within the loop body — accepting that we will

have to make a safe over-approximation for this to be possible in general. In other

words, rather than associating a single measure with each stage in a S method, we

can associate a set of measures with it. We can then construct a widening operator that

allows us to over-approximate the set of measures that are possible at a given stage.

This idea is known as a memoised abstract interpretation, and is illustrated in Fig-

ure A.2. We can construct this in two stages:
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1. Lift our abstract interpretation so that it operates over sets of measures ρ, rather

than individual measures µ. This means that the transitions in the abstract inter-

pretation will be as follows:

ρ ⊢ s→ M(ρ) ⊢ s′ if s
M
−−→ s′ ∈ JO. f K

T♯
pa

where M(ρ) = {M(µ) | µ ∈ ρ }.

2. Construct a memoised abstract interpretation, which allows us to jump to an

over-approximation of the above sets, rather than expanding them out com-

pletely:

ρ ⊢ s→♯ LookupO. f (s′)▽M(ρ) ⊢ s′ if s
M
−−→ s′ ∈ JO. f K

T♯
pa

Here, LookupO. f : JO. f K
S ♯
p → P(TM) is a map that records the set of measures

that have been seen at a stage s during the abstract interpretation. We use TM to

denote the set of all truncated multivariate normal measures. When we execute

a transition ρ ⊢ s→ ρ′ ⊢ s′ that computes a new set of measures for the stage

s′, we combine them with those already seen at that stage, using a widening

operator ▽ : P(TM)×P(TM)→ P(TM), which over-approximates the union of

two sets of measures. For looping behaviour, this allows us to jump to a value

that encompasses all iterations of the loop — which in the worst case, might be

the set of all measures, ⊤ = TM.

After each transition, we update the lookup function as follows:

LookupO. f (s′) := LookupO. f (s′)▽M(ρ)

Whilst this general approach is standard in the abstract interpretation literature, there

are particular problems when we consider our domain of truncated multivariate normal

measures. The first problem is in choosing which sets of measures we can represent —

i.e. the forms that ρ can take — and the second problem is in constructing the widening

operator ▽, which combines these sets of measures.

If we return to the example from Figure A.1, we can see that at each iteration of

the loop, the mean is altered by a constant offset, whereas the truncation intervals and

the covariance matrix remain the same. We could therefore represent this series of

measures more compactly by the following set:
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Figure A.3: A one-dimensional additive set of measures

This set corresponds to all the possible measures that can occur within the loop. If we

sum the total weights of the measures of this set, we get an overall value of 9. This

corresponds to us entering the loop nine times, as we would expect. Since the total

weight after exiting the loop must be no greater than the total weight before entering it,

we can conclude that the total weight of the measures in the End state is 1. This means

that if we are in the Loop state, the probability of moving to the End state is 1
9+1
= 0.1,

which corresponds to the expectation that there are ten iterations of the loop.

To represent such a set of measures in general, we could introduce the following

parameterised form for ρ:

{T [a, b]NN(µ+nc,Σ) | n ∈ N≥0 }

This is illustrated in Figure A.3 in the case of a one-dimensional additive update. Note

that although there are an infinite number of measures in the set, the sum of the mea-

sures truncated to the interval [a, b] has a finite total weight.

To illustrate how we could construct a widening operator ▽, let us consider how

we might obtain the above parameterised set of measures from two singleton sets of

measures. If µ1 = T [a1, b1]NN(µ1,Σ1) and µ2 = T [a2, b2]NN(µ2,Σ2), then:

{µ1 }▽{µ2 } =































{µ1 } if µ1 = µ2

{T [a′, b′]NN(µ1+nc,Σ1) | n ∈ N≥0 } if Σ1 = Σ2

⊤ otherwise

where ∀i. a′(i) =min{ a1(i), a2(i) }, ∀i. b′(i) =max{ b1(i), b2(i) }, and c = µ2−µ1.

Whilst we can use this approach for certain simple classes of loop, such as the

above, it quickly becomes very complicated when we try to generalise it. There are

three main reasons for this:

1. It is hard to find sets of measures, such as the above, that classify the behaviour

of more general classes of loop. Most loops have a more complex operation
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that simply incrementing the value of a variable, and so we would need to find

a compact way of representing the set of measures that this corresponds to. The

problem becomes even more difficult when there is branching behaviour within

the loop.

2. It is hard to construct widening operators that correctly identify the behaviour

of a loop, just by looking at the measures on the state of the variables. For

example, if we exchange the values of two variables, then we will be unable

to detect this by looking at the measures if the variables have the same mean,

variance, truncation interval, and covariances with the other variables. If they

have different values, however, then we can tell this difference. This means that

we have to be very careful when constructing a widening operator, and there are

subtle considerations to make.

3. Possibly the most important problem is that we need to manipulate these sets of

measures. When we exit a loop, we will subsequently perform operations on the

variables that were modified within the loop. Consequently, we need to lift our

measure operators to sets of measures. Given that these sets may be infinite, this

is not easy to do, and leads to even more complicated parameterised forms for

the sets of measures.

Because of these concerns, the main presentation of this thesis considered a version of

the S language without looping behaviour. We believe that the correct approach to

handling loops is not to follow the above presentation, but to make use of other tech-

niques — perhaps, using a different analysis technique for the full language with loops,

and using the abstract interpretation and collecting semantics presented in Chapter 4

to handle the non-looping fragment of the language. For a more detailed discussion of

future work, see Chapter 8.





Appendix B

Abstract Interpretation of the

Client-Server Example

Recall that the vector of variables for the example in Figure 3.1 is defined as follows:

X(1) = quantity X(2) = cash X(3) = price

X(4) = success X(5) = max order X(6) = 〈price−cash〉

X(7) = 〈quantity−max order〉

The measures indicated in the abstract interpretation of Figure 4.2 (b) are as follows:
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The total measures are as follows, where we write ‘≈ 0’ to mean that the total measure

is zero to within seven decimal places, as opposed to being precisely zero:

Measure Total Measure

µ1 0.996170

µ11 0.996170

µ111 0.202328

µ112 0.791462

µ113 0.002379

µ1111 0.202411

µ1121 0.369831

µ1131 0.002379

µ1112 ≈ 0

µ1122 0.421657

Measure Total Measure

µ1132 0

µ11111 0.202414

µ11211 0.369921

µ11311 0.002421

µ11112 ≈ 0

µ11212 ≈ 0

µ11312 ≈ 0

µ111111 0.202414

µ112111 0.369921

µ113111 0.002421

Measure Total Measure

µ111121 ≈ 0

µ112121 ≈ 0

µ113121 ≈ 0

µ111112 0

µ112112 0

µ113112 0

µ111122 0

µ112122 0

µ113122 0





Appendix C

Kronecker Operators

The Kronecker operators are a class of tensor operator, allowing two matrices to be

combined in such a way that their original elements can be recovered — the operators

are universal. If each matrix describes a probabilistic transition system over a given

state space, then the Kronecker product describes a probabilistic transition system over

the Cartesian product of the state spaces.

Definition C.1. The Kronecker product of an m×n matrix A and a p×q matrix B is

an mp×nq matrix A⊗B defined as follows:

A⊗B =


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a11B . . . a1nB
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. . .
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am1B . . . amnB
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a11b11 . . . a11b1q . . . a1nb11 . . . a1nb1q

...
. . .

...
...

. . .
...

a11bp1 . . . a11bpq . . . a1nbp1 . . . a1nbpq

...
...

. . .
...

...

am1b11 . . . am1b1q . . . amnb11 . . . amnb1q

...
. . .

...
...

. . .
...

am1bp1 . . . am1bpq . . . amnbp1 . . . amnbpq
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If A and B are stochastic matrices, then A⊗ B is also stochastic, with the transition

probabilities encoding the simultaneous firing of transitions in A and B.

Using the above definition, we can also define a Kronecker notion of summation.

This is only defined for square matrices.
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220 Appendix C. Kronecker Operators

Definition C.2. The Kronecker sum of an n×n matrix A and a m×m matrix B is an

mn×mn matrix A⊕B defined as follows:

A⊕B = A⊗ Im+ In⊗B

where In denotes the n×n identity matrix.

If A and B are stochastic matrices, then A⊕ B corresponds to the interleaving of the

the DTMCs that they describe. Unlike the Kronecker product, the Kronecker sum only

allows transitions to take place independently — either a transition from A can fire, or

a transition from B, but not from both simultaneously.



Appendix D

Proofs for Chapter 6

Theorem 6.1.1. Consider two generator matrices Q1 = (r1, P1) and Q2 = (r2, P2), cor-

responding to the same state space S (Q1 and Q2 are both |S | × |S | matrices). Then

Q1+Q2 can be written as follows:

Q1+Q2 = (r1, P1)+ (r2, P2) =

(

r1+ r2,
r1

r1+ r2
P1+

r2

r1+ r2
P2

)

where (r1+ r2)(s) = r1(s)+ r2(s), and
ri

r1+r2
(s) =

ri(s)
r1(s)+r2(s)

, i ∈ {1,2 }, for all s ∈ S .

Proof: The proof is as follows. For an entry s, s′, when s , s′, in Q1+Q2, we have:

(Q1+Q2)(s, s′) = ((r1, P1)+ (r2, P2))(s, s′)

= (r1, P1)(s, s′)+ (r2, P2)(s, s′)

= r1(s)P1(s, s′)+ r2(s)P2(s, s′)

= (r1(s)+ r2(s))
(

r1(s)
r1(s)+r2(s)

P1(s, s′)+ r2(s)
r1(s)+r2(s)

P2(s, s′)
)

=
(

r1+ r2,
r1

r1+r2
P1+

r2

r1+r2
P2

)

(s, s′)

When s = s′, we similarly have:

(Q1+Q2)(s, s) = ((r1, P1)+ (r2, P2))(s, s)

= (r1, P1)(s, s)+ (r2, P2)(s, s)

= r1(s)(P1(s, s)−1)+ r2(s)(P2(s, s)−1)

= (r1(s)+ r2(s))
(

r1(s)
r1(s)+r2(s)

P1(s, s)+
r2(s)

r1(s)+r2(s)
P2(s, s)−1

)

=
(

r1+ r2,
r1

r1+r2
P1+

r2

r1+r2
P2

)

(s, s)
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Theorem 6.1.3. For all well-formed PEPA models C, the CTMC induced by the se-

mantics of PEPA and the CTMC described by the generator matrix Q(C), projected

onto the derivative set ds(C) (the reachable state space of C), are isomorphic.

Proof: Since, in a PEPA model, the transitions of each action type are independent

from one another, we can consider them separately. We therefore need to prove that

for each action type, the transition rates induced by the Kronecker form are identical

to those induced by the PEPA semantics, as given in [91].

We proceed by induction on the structure of the system equation. In the base case,

for a sequential component Ci, Qa(Ci) = (ri,a, Pi,a) corresponds, by Definition 6.1.2,

precisely to those activities of type a that Ci can perform. In other words, for s, s′ ∈

S i, ri,a(s) is the apparent rate of action type a in state s, and Pi,a(s, s′) is the relative

probability of moving to state s′, if we perform an a activity in state s.

For the inductive case, we make the hypothesis that there is a transition C1

(a,r)
−−−→C2

induced by the PEPA semantics of a component C — where C may be a composi-

tion of sequential components, and C1,C2 ∈ ds(C) — if and only if Qa(C)(C1,C2) =

ra(C1)Pa(C1,C2) = r. We can ignore the case when C1 =C2 as self loops cancel out in

the generator matrix.

Assume that there is an additional component C′ such that C′
1

(a,r′)
−−−−→ C′

2
iff

Qa(C′)(C′
1
,C′

2
) = r′, as above. We will prove that for all sets of action types L, C ⊲⊳

L
C′

induces a transition C1 ⊲⊳
L

C′
1

(a,R)
−−−−→C2 ⊲⊳

L
C′

2
iff Qa(C ⊲⊳

L
C′)(C1 ⊲⊳

L
C′

1
,C2 ⊲⊳

L
C′

2
) = R.

Consider the case a ∈ L. Then:

Qa(C ⊲⊳
L

C′)(C1 ⊲⊳
L

C′
1
,C2 ⊲⊳

L
C′

2
)

= (Qa(C)�Qa(C′))(C1 ⊲⊳
L

C′
1
,C2 ⊲⊳

L
C′

2
)

= ((ra, Pa)� (r′a, P
′
a))(C1 ⊲⊳

L
C′

1
,C2 ⊲⊳

L
C′

2
)

= (min{ra,r
′
a }, Pa⊗ P′a)(C1 ⊲⊳

L
C′

1
,C2 ⊲⊳

L
C′

2
)

= min{ra(C1),r′a(C′
1
) }(Pa(C1,C2)× P′a(C′

1
,C′

2
))

= min{ra(C1),r′a(C′
1
) } r

ra(C1)
r′

r′a(C′
1
)

where the final step follows from the induction hypothesis. This is equal by definition

to the PEPA semantics of cooperation for action types a ∈ L, hence gives the rate R of

the transition C1 ⊲⊳
L

C′
1

(a,R)
−−−−→C2 ⊲⊳

L
C′

2
induced by the PEPA semantics.
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Consider the case a < L. Then:

Qa(C ⊲⊳
L

C′)(C1 ⊲⊳
L

C′
1
,C2 ⊲⊳

L
C′

2
)

= (Qa(C)�Qa(C′))(C1 ⊲⊳
L

C′
1
,C2 ⊲⊳

L
C′

2
)

= ((ra, Pa)� (r′a, P
′
a))(C1 ⊲⊳

L
C′

1
,C2 ⊲⊳

L
C′

2
)

= ((ra, Pa)� (r⊤, I)+ (r⊤, I)� (r′a, P
′
a))(C1 ⊲⊳

L
C′

1
,C2 ⊲⊳

L
C′

2
)

= min{ra,⊤}(C1,C
′
1
)Pa(C1,C2)I(C′

1
,C′

2
)+min{⊤,r′a }(C1,C

′
1
)I(C1,C2)P′a(C′

1
,C′

2
)

= ra(C1)Pa(C1,C2)I(C′
1
,C′

2
)+ r′a(C′

1
)I(C1,C2)P′a(C′

1
,C′

2
)

=































ra(C1)Pa(C1,C2) if C′
2
=C′

1

r′a(C′
1
)P′a(C′

1
,C′

2
) if C2 =C1

0 otherwise

=































r if C′
2
=C′

1

r′ if C2 =C1

0 otherwise

where the final step follows from the induction hypothesis. This corresponds to the

PEPA semantics of cooperation for action types a < L, where the activities of the

two components take place independently. In other words, C1 ⊲⊳
L

C′
1

(a,r)
−−−→ C2 ⊲⊳

L
C′

1

if C1

(a,r)
−−−→C2 in component C, and C1 ⊲⊳

L
C′

1

(a,r′)
−−−−→C1 ⊲⊳

L
C′

2
if C′

1

(a,r′)
−−−−→C′

2
in C′.
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Theorem 6.3.4. Consider a CTMCM = (S ,π(0), P,r,L). For any uniformisation con-

stant λ ≥maxs∈S r(s), and any abstraction (S ♯,α) onM, the following holds:

Abs(S ♯,α)

(

Unif λ(M)
)

≤ ACTMCλ
(

AbsComp(S ♯,α)(M)
)

Proof: Consider a CTMCM = (S ,π(0), P,r,L), which is not necessarily uniform. Let

us define its uniformisation with respect to λ as:

M = Unif λ(M) = (S ,π(0), P,r,L)

where P is the uniformised probability transition matrix (see Definition 5.1.2). Since

M is a uniformised CTMC, we can define its abstractionM♯ with respect to (S ♯,α) as

follows:

M♯ = Abs(S ♯,α)(M) = (S ♯,π(0)♯, PL, PU ,λ,L♯)

where PL and PU give the lower and upper bounds for the uniformised transition prob-

abilities, and L♯ is the abstract labelling function (see Definition 5.6.3).

Considering the abstract CTMC component, let us define:

M♯♯ = AbsComp(S ♯,α)(M) = (S ♯,π(0)♯, PL
C , P

U
C ,r

L
C ,r

U
C ,L

♯)

where PL
C

, PU
C

, rL
C

and rU
C

give the lower and upper bounds for the transition probabil-

ities and exit rates, and L♯ is the abstract labelling function (see Definition 6.3.3). The

CTMC induced byM♯♯ is given by:

ACTMCλ(M
♯♯) = (S ♯,π(0)♯, P′L, P′U ,λ,L♯)

where P′L and P′U give upper and lower bounds for the uniformised transition prob-

abilities, after converting the abstract CTMC component into an abstract CTMC (see

Definition 6.3.2).

Let us now consider the lower bounding matrices — we require that for all s, s′ ∈

S ♯, P′L(s, s′) ≤ PL(s, s′). Consider first the case when s , s′. Then we have:

P′L(s, s′) =
rL
C

(s)

λ
PL

C(s, s′) Definition 6.3.2

=
1

λ
min
t∈γ(s)

r(t) min
t∈γ(s)

∑

t′∈γ(s′)

P(t, t′) Definition 6.3.3

≤ min
t∈γ(s)

∑

t′∈γ(s′)

r(t)

λ
P(t, t′) Since min(ab) ≥min(a)min(b)

= min
t∈γ(s)

∑

t′∈γ(s′)

P(t, t′) Definition 5.1.2

= PL(s, s′) Definition 5.6.3
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Note that the central step works on the basis that all rates and probabilities are positive,

hence the minimum of the product is greater than or equal to the product of the minima.

For the case when s = s′, we have:

P′L(s, s) = 1−
rU
C

(s)

λ
+

rL
C

(s)

λ
PL

C(s, s) Definition 6.3.2

= 1−
1

λ
max
t∈γ(s)

r(t)+
1

λ
min
t∈γ(s)

r(t) min
t∈γ(s)

∑

t′∈γ(s)

P(t, t′) Definition 6.3.3

≤ 1−
1

λ
max
t∈γ(s)

r(t)+ min
t∈γ(s)

∑

t′∈γ(s)

r(t)

λ
P(t, t′)

≤ 1−max
t∈γ(s)

∑

t′∈S \{ t }

r(t)

λ
P(t, t′)+ min

t∈γ(s)

∑

t′∈γ(s)\{ t }

r(t)

λ
P(t, t′) See Below

= min
t∈γ(s)





































1−
∑

t′∈S \{ t }

r(t)

λ
P(t, t′)



















+
∑

t′∈γ(s)\{ t }

r(t)

λ
P(t, t′)



















= min
t∈γ(s)

∑

t′∈γ(s)

P(t, t′) Definition 5.1.2

= PL(s, s) Definition 5.6.3

To prove the noted step, let us assume that we have the minimum and maximum values,

tmin
1

, tmin
2

, tmax
3

and tmin
4

, of the following sums:

• tmax
1

maximises: max
t∈γ(s)

(r(t)).

• tmin
2

minimises: min
t∈γ(s)

∑

t′∈γ(s)

r(t)

λ
P(t, t′).

• tmax
3

maximises: max
t∈γ(s)

∑

t′∈S \{ t }

r(t)

λ
P(t, t′).

• tmin
4

minimises: max
t∈γ(s)

∑

t′∈γ(s)\{ t }

r(t)

λ
P(t, t′).
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Using these minimising and maximising values, we have:

1−
r(tmax

1
)

λ
+

∑

t′∈γ(s)

r(tmin
2

)

λ
P(tmin

2 , t
′)

≤ 1−
r(tmax

1
)

λ
+

∑

t′∈γ(s)

r(tmin
4

)

λ
P(tmin

4 , t
′)

= 1−
r(tmax

1
)

λ
+

r(tmin
4

)

λ
P(tmin

4
, tmin

4
) +

∑

t′∈γ(s)\{ tmin
4
}

r(tmin
4

)

λ
P(tmin

4 , t
′)

≤ 1−
r(tmax

3
)

λ
+

r(tmax
3

)

λ
P(tmax

3
, tmax

3
) +

∑

t′∈γ(s)\{ tmin
4
}

r(tmin
4

)

λ
P(tmin

4 , t
′)

= 1−
r(tmax

3
)

λ
(1− P(tmax

3
, tmax

3
)) +

∑

t′∈γ(s)\{ tmin
4
}

r(tmin
4

)

λ
P(tmin

4 , t
′)

= 1−
r(tmax

3
)

λ

∑

t′∈S \{ tmax
3
}

P(tmax
3 , t′) +

∑

t′∈γ(s)\{ tmin
4
}

r(tmin
4

)

λ
P(tmin

4 , t
′)

= 1−
∑

t′∈S \{ tmax
3
}

r(tmax
3

)

λ
P(tmax

3 , t′) +
∑

t′∈γ(s)\{ tmin
4
}

r(tmin
4

)

λ
P(tmin

4 , t
′)

Hence it holds that P′L(s, s′) ≤ PL(s, s′).

By a similar argument, we can show that PU(s, s′) ≤ P′U(s, s′), hence we have

M♯ ≤ ACTMCλ(M
♯♯).



227

Theorem 6.3.5. Consider two PEPA components C1 and C2, with abstractions (S
♯
1
,α1)

and (S
♯
2
,α2) respectively. Let M

♯♯
i,a = AbsComp

(S
♯
i
,αi)

(Qa(Ci)) for i ∈ {1,2 }. Then for

all λ such that Unif λ(C1 ⊲⊳
L

C2) is defined, the following holds:

Abs(S ♯,α)

(

Unif λ

(

Q
(

C1 ⊲⊳
L

C2

)))

≤ ACTMCλ



















∑

a∈L

M
♯♯
1,a

�M
♯♯
2,a
+

∑

a∈L

M
♯♯
1,a

�M
♯♯
2,a



















where S ♯ = S
♯
1
×S
♯
2
, α(s1, s2) = (α1(s1),α2(s2)), and L = (Act(C1)∪Act(C2)) \L.

Proof: Consider first a particular action type a ∈ L∪ L. This results in the following

term from the above comparison (expanding out the Kronecker operator on the left

hand side):

Abs(S ♯,α)

(

Unif λ (Qa(C1)�Qa(C2))
)

≤ ACTMCλ

(

M
♯♯
1,a

�M
♯♯
2,a

)

Where � =� if a ∈ L, and � if a ∈ L.

From Theorem 6.3.4, we have the following:

Abs(S ♯,α)

(

Unif λ (Qa(C1)�Qa(C2))
)

≤ ACTMCλ
(

AbsComp(S ♯,α) (Qa(C1)�Qa(C2))
)

We therefore need to show that:

AbsComp(S ♯,α) (Qa(C1)�Qa(C2)) =M
♯♯
1,a

�M
♯♯
2,a

Consider the case when a ∈ L, and therefore � =�. We have:

Qa(C1)�Qa(C2) = (S 1×S 2,π
(0)

1
⊗π

(0)

2
, P1,a⊗ P2,a,min{r1,a,r2,a },L1×L2)

The abstract CTMC componentM
♯♯
a that this induces is as follows:

M
♯♯
a = AbsComp(S ♯,α)(Qa(C1)�Qa(C2))

=
(

S
♯
1
×S
♯
2
,π

(0)♯
1
⊗π

(0)♯
2
, (P1,a⊗ P2,a)L, (P1,a⊗ P2,a)U ,

(min{r1,a,r2,a })
L, (min{r1,a,r2,a })

U ,L
♯
1
×L
♯
2

)

But notice that the lower bound (P1,a ⊗ P2,a)L is the same as PL
1,a ⊗ PL

2,a, since the

minimum of a product is the same as the product of the minima, for positive values.

Furthermore, the lower bound for the rate function, (min{r1,a,r2,a })
L, is the same as

taking the minimum of the lower bounding rate functions, min{rL
1,a,r

L
2,a }. The same

holds for the upper bounds. But this is the same as the composition of the abstract

CTMC components of C1 and C2 for action type a:

M
♯♯
1,a

�M♯♯
2,a
=

(

S
♯
1
×S
♯
2
,π

(0)♯
1
⊗π

(0)♯
2
, PL

1,a⊗PL
2,a, P

U
1,a⊗PU

2,a,min{rL
1,a,r

L
2,a },min{rU

1,a,r
U
2,a },L

♯
1
×L
♯
2

)
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It therefore follows thatM
♯♯
a =M

♯♯
1,a

�M
♯♯
2,a

.

Consider the case when a ∈ L, and therefore � =�. We have:

Qa(C1)�Qa(C2) = (S 1×S 2,π
(0)

1
⊗π

(0)

2
, P1,a⊕ P2,a,r1,a+ r2,a,L1×L2)

This induces the following abstract CTMC component:

M
♯♯
a = AbsComp(S ♯,α)(Qa(C1)�Qa(C2))

=
(

S
♯
1
×S
♯
2
,π

(0)♯
1
⊗π

(0)♯
2
, (P1,a⊕ P2,a)L, (P1,a⊕ P2,a)U ,

(r1,a+ r2,a)L, (r1,a+ r2,a)U ,L
♯
1
×L
♯
2

)

But we have, for:

(r1,a+ r2,a)L(s
♯
1
, s
♯
2
) = min

s1∈γ(s
♯
1
),s2∈γ(s

♯
2
)

r1,a(s1)+ r2,a(s2)

= min
s1∈γ(s

♯
1
)

r1,a(s1)+ min
s2∈γ(s

♯
2
)

r2,a(s2)

= rL
1,a(s

♯
1
)+ rL

2,a(s
♯
2
)

The same follows for the upper bound of the rate function, and we follow a similar

argument for the bounds of the probabilistic transition matrices. Hence this is the

same as the composition of the abstract CTMC components of C1 and C2 for action

type a:

M
♯♯
1,a
⊕M

♯♯
2,a
=

(

S
♯
1
×S
♯
2
,π

(0)♯
1
⊗π

(0)♯
2
, PL

1,a⊕ PL
2,a, P

U
1,a⊕ PU

2,a,r
L
1,a+ rL

2,a,r
U
1,a+ rU

2,a,L
♯
1
×L
♯
2

)

HenceM
♯♯
a =M

♯♯
1,a

�M
♯♯
2,a

.

We have shown that the safety of the abstraction is preserved for all action types

a ∈ L∪L, and so it follows that this also holds for the sum over all action types.
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Theorem 6.4.5. For generator matrices Qa = ra(Pa − I) and Q′a = r′a(P′a − I′), if

Qa ≤rst Q′a and for all s ∈ S , ra(s) ≤ r′a(s), then Qa ≤st Q′a.

Proof: For any λ that is not exceeded in magnitude by any diagonal element of Qa or

Q′a, we need to show that
Qa

λ + I ≤st
Q′a
λ + I, by the definition of the stochastic ordering

on CTMCs. This corresponds to showing that:

ra Pa

λ
+

(

1−
ra

λ

)

I ≤st

r′a P′a

λ
+

(

1−
r′a

λ

)

I

remembering that ra and r′a are apparent rate functions, which can be written as vectors.

By the definition of the strong stochastic ordering, this requires that, for each row s and

for all states s′:

ra(s)

λ

∑

t≻s′

Pa(s, t)+

(

1−
ra(s)

λ

)

1s′≺s ≤
r′a(s)

λ

∑

t≻s′

P′a(s, t)+

(

1−
r′a(s)

λ

)

1s′≺s

where 1s′≺s is the indicator function, evaluating to one if the condition s′ ≺ s holds,

and to zero otherwise. If we are above the diagonal element (i.e. the indicator term

evaluates to zero), then the relation holds since ra(s) ≤ r′a(s) and Pa ≤st P′a. Otherwise,

we have, for s′ ≺ s:

ra(s)

λ

∑

t≻s′

Pa(s, t)−
ra(s)

λ
≤

r′a(s)

λ

∑

t≻s′

P′a(s, t)−
r′a(s)

λ

which, on re-arranging, gives:

r′a(s)

ra(s)
≤

1−
∑

t≻s′

Pa(s, t)

1−
∑

t≻s′

P′a(s, t)

But since we know that the left-hand side is less than or equal to the minimum of all

possible ratios on the right-hand side, this holds for all s′.



230 Appendix D. Proofs for Chapter 6

Theorem 6.4.6. For a generator matrix Qa = ra(Pa − I), if Qa is rate-wise monotone,

and for all s ≺ s′ ∈ S , ra(s) ≤ ra(s′), then Qa is monotone.

Proof: For any λ that is not exceeded in magnitude by any diagonal element of Qa, we

need to show that
Qa

λ + I is monotone, by the definition of monotonicity for CTMCs.

This corresponds to showing that:

ra Pa

λ
+

(

1−
ra

λ

)

I

is monotone, where we write the apparent rate function ra as a vector. By the definition

of monotonicity, we require for all states s and s′, such that s ≺ s′ (two rows that we

compare), and for all states s′′ (elements along the row):

ra(s)

λ

∑

t≻s′′

Pa(s, t)+

(

1−
ra(s)

λ

)

1s′′≺s ≤
ra(s′)

λ

∑

t≻s′′

Pa(s′, t)+

(

1−
ra(s′)

λ

)

1s′′≺s′

If we are above the diagonal element in both rows (i.e. the indicator terms 1s′′≺s and

1s′′≺s′ both evaluate to zero), then the relation holds since ra(s) ≤ ra(s′) and Pa is

monotone. Otherwise, we have to consider two cases: when s ≺ s′′ ≺ s′, and when

s′′ ≺ s.

When s ≺ s′′ ≺ s′, we have:

ra(s)

λ

∑

t≻s′′

Pa(s, t) ≤
ra(s′)

λ

∑

t≻s′′

Pa(s′, t)+1−
ra(s′)

λ

which holds as before, since 1−
ra(s′)
λ > 0.

Finally, when s′′ ≺ s, we have:

ra(s)

λ

∑

t≻s′′

Pa(s, t)−
ra(s)

λ
≤

ra(s′)

λ

∑

t≻s′′

Pa(s′, t)−
ra(s′)

λ

which, on re-arranging, gives:

ra(s′)

ra(s)
≤

1−
∑

t≻s′′

Pa(s, t)

1−
∑

t≻s′′

Pa(s′, t)

But since we know that the left-hand side is less than or equal to the minimum of all

possible ratios on the right-hand side, this holds for all s′′.
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Theorem 6.4.12 (Monotonicity). Let two components, C1 and C2, occur in contexts

c©1 and c©2 respectively, such that C1 ∈ c©2 and C2 ∈ c©1. Let c©1 be internally bounded

by B1
int

, and c©2 by B2
int

, for action type a.

If the matrices Q1,a = r1,a(P1,a− I) of C1 and Q2,a = r2,a(P2,a− I) of C2 are context-

bounded rate-wise monotone by B1
int

and B2
int

respectively, then (r1,a, P1,a)� (r2,a, P2,a)

is context-bounded rate-wise monotone by the internal bound B3
int

of the context c©3 of

C1 ⊲⊳
L

C2, for all action sets L.

To prove this theorem, we will first establish the following two lemmas.

Lemma D.1 shows that the Kronecker product preserves monotonicity, and Lemma D.2

shows that the minimum of two monotone functions is also monotone. We omit the

subscript a for clarity, hence we write Pi in place of Pi,a, and ri in place of ri,a for

i ∈ {1,2 }:

Lemma D.1. Let P1 and P2 be monotone stochastic matrices describing the PEPA

components C1 and C2 respectively, which have state spaces (S 1,≺1) and (S 2,≺2).

Then P1⊗ P2 is also monotone under the lifted orderings ≺L
1

and ≺L
2

on S 1×S 2.

Proof: Consider states (s1, s2) ≺L
1

(s′
1
, s′

2
), recalling that this implies that s1 ≺1 s′

1
and

¬∃s′′
2
. s′′

2
≺2 s2. We need to show that the following inequality holds, for all s ∈ ds(C1)

and t ∈ ds(C2):

∑

(s′,t′)≻L
1

(s,t)

P1(s1, s
′)P2(s2, t

′) ≤
∑

(s′,t′)≻L
1

(s,t)

P1(s′1, s
′)P2(s′2, t

′)

But in order for there to be any states (s′, t′) ≻ (s, t), t must be the smallest state in

(S 2,≺2). Hence this is equivalent to:

∑

s′≻1s

∑

t′∈S 2

P1(s1, s
′)P2(s2, t

′) ≤
∑

s′≻1s

∑

t′∈S 2

P1(s′1, s
′)P2(s′2, t

′)

which we rewrite to give:

∑

s′≻1s

P1(s1, s
′) ≤

∑

s′≻1s

P1(s′1, s
′)

This holds since P1 is monotone under (S 1,≺1). The proof of monotonicity under

(S 1×S 2,≺
L
2
) follows similarly.

Lemma D.2. Let r1 and r2 be monotone functions. Then r3(s1, s2)=min{r1(s1),r2(s2) }

is also monotone, under the orderings (S 1×S 2,≺
L
1
) and (S 1×S 2,≺

L
2
).
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Proof: Consider states (s1, s2) ≺L
1

(s′
1
, s′

2
). By definition, s1 ≺1 s′

1
and either s2 ≺1 s′

2

or s2 = s′
2
. There are two cases to consider:

Case 1: min{r1(s′
1
),r2(s′

2
) } = r1(s′

1
). Then:

min{r1(s1),r2(s2) } ≤ r1(s1)

≤ r1(s′
1
)

≤ min{r1(s′
1
),r2(s′

2
)}

Case 2: min{r1(s′
1
),r2(s′

2
) } = r2(s′

2
). Then:

min{r1(s1),r2(s2) } ≤ r2(s2)

≤ r2(s′
2
)

≤ min{r1(s′
1
),r2(s′

2
) }

Hence r3 is monotone with respect to (S 1×S 2,≺
L
1
). The proof of monotonicity under

(S 1×S 2,≺
L
2
) follows similarly.

Proof: [Theorem 6.4.12] Let (S 1,≺1) and (S 2,≺2) be the state spaces of components

C1 and C2 respectively. We will show that the generator matrix min{r1,r2 }(P1⊗P2− I)

is monotone with respect to (S 1×S 2,≺
L
1
).

We know from Lemma D.1 that the matrix P1 ⊗ P2 is monotone, and from

Lemma D.2 that the apparent rate function min{r1,r2 } is monotone increasing. Hence,

for all states (s1, s2) ≺L
1

(s′
1
, s′

2
), we need to show that:

max

{

B3
int,

min{r1(s′
1
),r2(s′

2
) }

min{r1(s1),r2(s2) }

}

≤ min
(t1,t2)≺L

1
(s1,s2)
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∑

(t′
1
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2
)≻L

1
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P1(s′1, t
′
1)P2(s′2, t

′
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where B3
int

is the internal bound of the context c©′′ of C ⊲⊳
L

C′:

Let (t1, t2) be the state under which the ratio on the right hand side is at a minimum.

Since t1 ≺1 s1 by definition of ≺L
1
, we know that the following relation holds:

max

{

B1
int,

r1(s′
1
)

r1(s1)

}

≤

1−
∑

t′
1
≻1t1

P1(s1, t
′
1)

1−
∑

t′
1
≻1t1

P1(s′1, t
′
1)

Furthermore, since by definition B1
int
≥

r2(s′
2
)

r2(s2)
, B2

int
≥

r1(s′
1
)

r1(s1)
, and B3

int
≤ min{B1

int
,B2

int
},

we can infer that:

max

{

B3
int,

r1(s′
1
)

r1(s1)
,
r2(s′

2
)

r2(s2)

}

≤max

{

B1
int,

r1(s′
1
)

r1(s1)

}
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To complete the proof, we need to make use of the following observation:

Observation D.3. For all positive a,b,c,d ∈ R:

max

{

a

b
,

c

d

}

≥
min{a,c }

min{b,d }

since a
b
≥

min{a,c }
b

and c
d
≥

min{a,c }
d

.

Using this observation, and the fact that t2 must be the smallest state in (S 2,≺2) by

the definition of ≺L
1
:

max

{

B3
int
,
min{r1(s′

1
),r2(s′

2
) }

min{r1(s1),r2(s2) }

}

≤ max

{

B3
int
,
r1(s′

1
)

r1(s1)
,
r2(s′

2
)

r2(s2)

}

≤ max

{

B1
int
,
r1(s′

1
)

r1(s1)

}

≤

1−
∑

t′
1
≻1t1

P1(s1, t
′
1)

1−
∑

t′
1
≻1t1

P1(s′1, t
′
1)

=

1−
∑

t′
1
≻1t1

P1(s1, t
′
1)

∑

t′
2
∈S 2

P2(s2, t
′
2)

1−
∑

t′
1
≻1t1

P1(s′1, t
′
1)

∑

t′
2
∈S 2

P2(s′2, t
′
2)

≤

1−
∑

(t′
1
,t′

2
)≻L

1
(t1,t2)

P1(s1, t
′
1)P2(s2, t

′
2)

1−
∑

(t′
1
,t′

2
)≻L

1
(t1,t2)

P1(s′1, t
′
1)P2(s′2, t

′
2)

= min
(t1,t2)≺(s1,s2)


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′
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∑

(t′
1
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2
)≻L

1
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′
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′
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
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The proof of monotonicity under (S 1×S 2,≺
L
2
) follows similarly.

Thus context-bounded rate-wise monotonicity is preserved by �.
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Theorem 6.4.13 (Lumpability). Let C1 and C2 be PEPA models with generator matri-

ces Q1 =
∑

a Q1,a and Q2 =
∑

a Q2,a, where Q1,a = r1,a(P1,a− I) and Q2,a = r2,a(P′
2,a− I).

Then for all action types a, if the terms Q1,a in Q1 and Q2,a in Q2 are ordinarily

lumpable according to the partitions L1 and L2 respectively, then the term Qa =

(r1,a, P1,a)� (r2,a, P2,a) in Q =
∑

a Qa is ordinarily lumpable according to L1×L2.

Proof: Observe that Q is the generator matrix of C1 ⊲⊳
L

C2, for some cooperation set

L. For each action type a, Q1,a is strongly equivalent to the lumped matrix L1(Q1,a), in

that any a activity in Q1,a can be matched by an a activity in L1(Q1,a). Similarly, Q2,a

and L2(Q2,a) are strongly equivalent.

It has been proven in [91] that the PEPA cooperation combinator preserves strong

equivalence, and that strong equivalence implies ordinary lumpability. It follows that

Qa = (r1,a, P1,a)� (r2,a, P2,a) is strongly equivalent to:

L1(r1,a, P1,a)�L2(r2,a, P2,a) = (L1×L2)((r1,a, P1,a)� (r2,a, P2,a))

Hence Qa is ordinarily lumpable according to the partition L1×L2.

Since for all action types Qa is ordinarily lumpable, it follows that Q =
∑

a Qa is or-

dinarily lumpable according to L1×L2. Therefore, the operator � preserves ordinary

lumpability over all action types.
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Theorem 6.4.14 (Stochastic Order). Consider the components Ci and C′
i
, with gener-

ator matrices Qi,a = ri,a(Pi,a− I) and Q′
i,a = r′

i,a(P′
i,a− I), for i ∈ {1,2 } and action type

a. Let Qi,a ≤
Bi

comp

rst Q′
i,a, with contexts c©i ≤st c©′

i
, where Bi

comp is the comparative bound

of c©i and c©′
i
. If B3

comp is the comparative bound of the contexts c©1∩ c©2 and c©′
1
∩ c©′

2
,

we have (r1,a, P1,a)� (r2,a, P2,a) ≤
B3

comp

rst (r′
1,a, P

′
1,a)� (r′

2,a, P
′
2,a).

Proof: For clarity, we will omit the subscript a, and hence write Pi in place of Pi,a,

and ri in place of ri,a for i ∈ {1,2 }. We omit the proofs that P1 ⊗ P2 ≤st P′
1
⊗ P′

2
and

that min{r1,r2 }(s1, s2) ≤min{r′
1
,r′

2
}(s1, s2) for all (s1, s2) ∈ S 1×S 2, since they are very

similar to Lemma D.1 and Lemma D.2 from the proof of Theorem 6.4.12 (Montonic-

ity).

Let (S 1,≺1) and (S 2,≺2) be the state spaces of components C1,C
′
1

and C2,C
′
2

re-

spectively. We will show that the generator matrix min{r′
1
,r′

2
}(P′

1
⊗P′

2
− I) is a context-

bounded rate-wise upper bound of min{r1,r2 }(P1⊗P2− I), with respect to the ordering

(S 1×S 2,≺
L
1
).

We need to show that the following inequality holds, for all states (s1, s2):

max

{

B3
comp,

min{r′
1
(s1),r′

2
(s2) }

min{r1(s1),r2(s2) }

}

≤ min
(t1,t2)≺L

1
(s1,s2)
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∑
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2
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′
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′
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Let (t1, t2) be the state for which the ratio on the right hand side is at a minimum. Since

t1 ≺1 s1 by definition of ≺L
1
, we know that the following relation holds:

max

{

B1
comp,

r′
1
(s1)

r1(s1)

}

≤

1−
∑

t′
1
≻1t1

P1(s1, t
′
1)

1−
∑

t′
1
≻1t1

P′1(s1, t
′
1)

Furthermore, since by definition of the comparative bounds, B1
comp ≥

r′
2
(s2)

r2(s2)
, and

B3
comp ≤min{B1

comp,B
2
comp }, we can infer that:

max

{

B3
comp,

r′
1
(s1)

r1(s1)
,
r′

2
(s2)

r2(s2)

}

≤max

{

B1
comp,

r′
1
(s1)

r1(s1)

}

To complete the proof, we make use of Observation D.3 from the proof of Theo-

rem 6.4.12 (Montonicity), and the fact that t2 must be the smallest state in (S 2,≺2)
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by the definition of ≺L
1
:

max

{

B3
comp,

min{r′
1
(s1),r′

2
(s2) }

min{r1(s1),r2(s2) }

}

≤ max

{

B3
comp,

r′
1
(s1)

r1(s1)
,
r′

2
(s2)

r2(s2)

}

≤ max

{

B1
comp,

r′
1
(s1)

r1(s1)

}

≤

1−
∑

t′
1
≻1t1

P1(s1, t
′
1)

1−
∑

t′
1
≻1t1

P′1(s1, t
′
1)

=

1−
∑

t′
1
≻1t1

P1(s1, t
′
1)

∑

t′
2
∈S 2

P2(s2, t
′
2)

1−
∑

t′
1
≻1t1

P′1(s1, t
′
1)

∑

t′
2
∈S 2

P′2(s2, t
′
2)

≤

1−
∑

(t′
1
,t′

2
)≻L

1
(t1,t2)

P1(s1, t
′
1)P2(s2, t

′
2)

1−
∑

(t′
1
,t′

2
)≻L

1
(t1,t2)

P′1(s1, t
′
1)P′2(s2, t

′
2)

= min
(t1,t2)≺(s1,s2)
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The proof of stochastic ordering under (S 1×S 2,≺
L
2
) follows similarly.

Thus the context-bounded rate-wise stochastic ordering is preserved by �.
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Theorem 6.4.15. If Qa = ra(Pa− I) ≤rst Q′a = r′a(P′a− I) and for all s ∈ S , ra(s) ≤ r′a(s),

and if Qb = rb(Pb − I) ≤rst Q′
b
= r′

b
(P′

b
− I) and for all s ∈ S , rb(s) ≤ r′

b
(s), then Qa +

Qb ≤st Q′a+Q′
b

Proof: Theorem 6.4.5 states that Qa ≤rst Q′a implies that Qa ≤st Q′a, and similarly for

Qb and Q′
b
. If we uniformise these matrices, we have:

Qa = λa(Pa− I)

Q′a = λa(P′a− I)

Qb = λb(Pb− I)

Q′b = λb(P′
b
− I)

where λa and λb are uniformisation constants. It follows that Pa ≤st P′a and Pb ≤st P′
b
,

hence for all states s:

∑

s≺s′

Pa(s, s′) ≤
∑

s≺s′

P′a(s, s′)

∑

s≺s′

Pb(s, s′) ≤
∑

s≺s′

P′
b
(s, s′)

Hence:
∑

s≺s′

Pa(s, s′)+
∑

s≺s′

Pb(s, s′) ≤
∑

s≺s′

P′a(s, s′)+
∑

s≺s′

P′
b
(s, s′)

Therefore Pa+ Pb ≤st P′a+ P′
b
, which implies that:

Qa+Qb ≤st Q′a+Q′b = (λa+λb)

(

λa

λa+λb

P′a+
λb

λa+λb

P′
b
− I

)
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Theorem 6.4.16. If Qa = ra(Pa− I) is rate-wise monotone, and for all s≺ s′ ∈ S , ra(s)≤

ra(s′), and if Qb = rb(Pb− I) is rate-wise monotone, and for all s≺ s′ ∈ S , rb(s)≤ rb(s′),

then Qa+Qb is monotone.

Proof: Theorem 6.4.6 states that the rate-wise monotonicity of Qa implies that Qa is

monotone, and similarly for Qb. If we uniformise these matrices, we have:

Qa = λa(Pa− I)

Qb = λb(Pb− I)

where λa and λb are uniformisation constants. It follows that Pa and Pb are both

monotone, hence for all states s and s′ such that s ≺ s′:

∑

s′≺s′′

Pa(s′, s′′) ≤
∑

s≺s′′

Pa(s, s′′)

∑

s′≺s′′

Pb(s′, s′′) ≤
∑

s≺s′′

Pb(s, s′′)

Hence:

∑

s′≺s′′

Pa(s′, s′′)+
∑

s′≺s′′

Pb(s′, s′′) ≤
∑

s≺s′′

Pa(s, s′′)+
∑

s≺s′′

Pb(s, s′′)

Therefore Pa+ Pb is monotone, which implies that:

Qa+Qb = (λa+λb)

(

λa

λa+λb

Pa+
λb

λa+λb

Pb− I

)

is also monotone.


